Answer:
I think it's 6 moles are produced
Explanation:
Each element in the periodic table has different but fixed number of the protons in nucleus of it's atom, which is known as the atomic number.
Transmutation of one chemical element into the another involves the changing of the atomic number. Such nuclear reaction requires millions of the times more energy as compared to normal chemical reactions. Thus, the dream of the alchemist of transmuting the lead into the gold was never achievable chemically .
Conversion of lead to gold in today's world:
This conversion is indeed possible. The requirements are a particle accelerator, tremendous supply of the energy. Nuclear scientists at the Lawrence Berkeley National Laboratory located in California, more than 30 years ago, succeeded in producing very minute amounts of the gold from the bismuth. Bismuth is a metallic element which is adjacent to the lead on periodic table. Same process would work for the lead but isolating gold at end of reaction would prove much more difficult because lead is available in many isotopes. The homogeneous nature of the element means that it is easier to separate the gold from the bismuth as compared to separate the gold from the lead which has four isotopic identities which all are stable.
A valid lewis structure of SO2 cannot be drawn without violating the octet rule.
correct me if i’m wrong.
Answer:Gases and solids , Solids and liquids
Explanation:
A solid has a definite shape while liquids and gases take the shape of the container in which they are found .
Hence when a substance changes it's state from gas to solid or solid to liquid, it's shape automatically changes as explained above.
Answer : The correct answer is 1) AlCl₃ - CH₃Cl 2) HNO₃ -H₂SO₄ at room temperature 3) Fuming HNO₃ -H₂SO₄ at 90-100 ⁰ C heat .
I think this reaction is forming 2,4,6- trinitrotoluene from benzene, since the product is not mentioned. Following are the steps to convert Benzene to 2,4,6 trinitrotoluene .
Step 1: Conversion of Benzene to Toluene .
Benzene can be converted to toluene by Friedel Craft Alkylation of benzene . In this reaction reagent AlCl₃ and Ch3Cl is used . Electrophile CH³⁺ is produced which attached on carbon of benzene and formation of Toluene and HCl occur.

Step 2 : Conversion of Toluene to dinitrotoluene.
Dinitritoluene is prepared from toluene by Nitration . This reaction uses Electrophilic substitution mechanism . The reagents used are HNO₃ and H₂SO₄ at room temperature . These reagents produces NO₂⁺ ( nitronium ion ), a electrophile which attacks on C2 and C4 Carbon atoms of Toluene.
Toluene 
Step 3) Conversion of Dinitro toluene to trinitrotoluene.
This reaction is extended nitration of toluene . Further nitration is done in extreme condition . The temperature of reaction is increased to 90- 100 ⁰ C . Due to which there is more production of NO²⁺ ion occurs from HNO₃ -H₂SO₄ and they attack on C6 carbon atom of dinitrotoluene which forms 2,4,6- trinitrotoluene.
Dinitrotoluene 
So over all reaction uses three reagents in order :
