1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delvig [45]
3 years ago
13

state the type of force which provide the needed centripetal force in the following instance :an electron orbiting the nucleus

Physics
1 answer:
Vladimir [108]3 years ago
6 0

i think the answer is electrostatic force hope this helps u stay safe

You might be interested in
Question 5 of 32
harkovskaia [24]
The answer is D
Neon has 20.0026 element more then the other
8 0
2 years ago
A plane accelerates from rest at a constant rate of 5.00 m/s2 along a runway that is 1800 m long. Assume that the plane reaches
tiny-mole [99]

Answer:

26.8 seconds

Explanation:

To solve this problem we have to use 2 kinematics equations: *I can't use subscripts for some reason on here so I am going to use these variables:

v = final velocity

z = initial velocity

x = distance

t = time

a = acceleration

{v}^{2}  =  {z}^{2}  + 2ax

v = z + at

First let's find the final velocity the plane will have at the end of the runway using the first equation:

{v}^{2}  =  {0}^{2}  + 2(5)(1800)

v = 60 \sqrt{5}

Now we can plug this into the second equation to find t:

60 \sqrt{5}  = 0 + 5t

t = 12 \sqrt{5}

Then using 3 significant figures we round to 26.8 seconds

3 0
3 years ago
Oscilloscope amplitude and frequency problem. Study the above graph. The volts/div dial is set to 2 volts/div and the time/div d
denis-greek [22]

Answer:

Amplitude = 8 Volts

Frequency = 0.067 kHz

Explanation:

Note: The missing picture in question is attached for your review.

Given:

Volts/Div = 2 V/div

Time/Div = 5 msec/div

Finding Amplitude:

Now, as you can see in the attached picture, there are 4 division between two peaks of the waveform, so,

Amplitude = 4 div/volts * 2 volts/ div )\\Amplitude = 8 Volts

(Multiplying by 2 V/div because oscilloscope dial is set at 2 V/div)

Finding Frequency:

As can be seen in attached picture, 3 division are there for one complete cycle of waveform,so,

Time Period = 3 div * 5msec /div\\Time Perod = 15 msec

Since,

Frequency = \frac{1}{Time Period}\\Frequency = \frac{1}{15m}\\Frequency = 0.067 kHz

8 0
3 years ago
Which is the smallest unit of life?
emmasim [6.3K]

Answer:

the cell is the smallest unit

7 0
2 years ago
A cross-country skier slides horizontally along the snow and comes to rest after sliding a distance of 11 m. If the coefficient
Basile [38]

Answer:

v_o = 4.54 m/s  

Explanation:

<u>Knowns  </u>

From equation, the work done on an object by a constant force F is given by:  

W = (F cos Ф)S                                   (1)  

Where S is the displacement and Ф is the angle between the force and the displacement.  

From equation, the kinetic energy of an object of mass m moving with velocity v is given by:  

K.E=1/2m*v^2                                       (2)

From The work- energy theorem , the net work done W on an object equals the difference between the initial and the find kinetic energy of that object:  

W = K.E_f-K.E_o                                 (3)

<u>Given </u>

The displacement that the sled undergoes before coming to rest is s = 11.0 m and the coefficient of the kinetic friction between the sled and the snow is μ_k = 0.020  

<u>Calculations</u>

We know that the kinetic friction force is given by:

f_k=μ_k*N

And we can get the normal force N by applying Newton's second law to the sled along the vertical direction, where there is no acceleration along this direction, so we get:  

∑F_y=N-mg

     N=mg

Thus, the kinetic friction force is:  

f_k = μ_k*N  

Since the friction force is always acting in the opposite direction to the motion, the angle between the force and the displacement is Ф = 180°.  

Now, we substitute f_k and Ф into equation (1), so we get the work done by the friction force:  

W_f=(f_k*cos(180) s

      =-μ_k*mg*s

Since the sled eventually comes to rest, K.E_f= 0 So, from equation (3), the net work done on the sled is:  

W= -K.E_o    

Since the kinetic friction force is the only force acting on the sled, so the net work on the sled is that of the kinetic friction force  

W_f= -K.E_o  

From equation (2), the work done by the friction force in terms of the initial speed is:  

W_f=-1/2m*v^2  

Now, we substitute for W_f= -μ_k*mg*s, and solving for v_o so we get:  

-μ_k*mg*s = -1/2m*v^2  

v_o = √ 2μ_kg*s

Finally, we plug our values for s and μ_k, so we get:  

v_o = √2 x (0.020) x (9.8 m/s^2) x (11.0 m) = 4.54 m/s  

v_o = 4.54 m/s  

6 0
3 years ago
Read 2 more answers
Other questions:
  • For a circuit shown in the figure, all quantities are accurate in 3 significant figures. What is the power dissipated in 2-ohm r
    12·1 answer
  • HELP ASAP. WILL GIVE BRAINLIEST.
    14·1 answer
  • three point charges are arranged in a line. charge q3=+5.00 nC and is located at the origin. charge q2=-3.00 nC and is located a
    6·1 answer
  • n object moves with a constant speed of 30 m/s on a circular track of radius 150 m. What is the acceleration of the object
    14·1 answer
  • Two piano strings are supposed to be vibrating at 220 Hz, but a piano tuner hears three beats every 2.5 s when they are played t
    12·1 answer
  • In an undeveloped country, the rural areas will often be off the grid, with no access to consistent electricity. For a household
    12·1 answer
  • The Americium nucleus, 241 95 Am, decays to a Neptunium nucleus, 237 93 Np, by emitting an alpha particle of mass 4.00260 u and
    14·1 answer
  • Will get Brainlest 5 star and heart looking for someone who knows 7 grd science flvs work dm and friend
    5·1 answer
  • An electrical appliances
    8·1 answer
  • Calculate the first and second velocities of the car with four washers attached to the pulley, using the formulas v1 = 0. 25 m /
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!