Answer:
Laws governing gas behavior.
Explanation:
Boyle's law:
It relates the pressure and volume of an ideal gas at a constant temperature.
According to this law:
"The volume of a fixed amount of gas at constant temperature is inversely proportional to its pressure".
.
Charle's law:
It relates the volume and absolute temperature of an ideal gas at a constant pressure.
According to this law:
"The volume of a fixed amount of gas at constant pressure is directly proportional to its absolute temperature".
.
Avogadro's law:
According to this law:
equal volumes of all gases under the same conditions of temperature and pressure contain, an equal number of moles.
.
Ideal gas equation:
By combining all the above-stated gas laws, this equation is formed as shown below:

R is called universal gas constant.
It has a value of 0.0821L.atm.mol-1.K-1.
Answer:
A) Energy is needed to start photosynthesis and is a product of cellular respiration.
Explanation:
Answer:
Equilibrium shifts to produce more reactant
Explanation:
- <em>Le Châtelier's principle</em> <em>states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.</em>
- When more product is added to the solution:
<em>This will increase the concentration of the products side, so the reaction will be shifted to the lift side (reactants side) to suppress the increase in the concentration of Products.</em>
<em />
<em>So, the right choice is: Equilibrium shifts to produce more reactant</em>
I took the test I think the guy above is correct I’m not to sure good luck thanks
<em>Answer:</em>
- The molarity of ammonia will be 2.88 M.
<em>Chemical equation</em>
HCl + NH3 ------> NH4Cl
First of calculate the moles of HCl
mole of HCl = Molarity × Vol (L)
mole of HCl = 0.800× 0.018 = 0.014 mole
As the in balance chemical, moles of HCl and NH3 areequal
so
moles of NH3= 0.014
Molarity of NH3 = moles ÷ V(L) = 0.014/0.005 = 2.88 M
<em>Result</em>:
- The molarity of ammonia will be 2.88 M.