Einstein's famous equation, E = mc^2 relates the mass (m) of an object to energy (E). The speed of light (c), is the constant of proportionality. Einstein formulated the equation within his theory of special relativity. Indeed, a physical interpretation of this equation is that any given mass is equivalent to the energy given by the equation, if it were suddenly converted to energy. Therefore the answer to the question is true.
D) energy required to remove a valence electron
Explanation:
The ionization energy is the energy required to remove a valence electron from an element.
Different kinds of atoms bind their valence electrons with different amount of energy.
- To remove the electrons, energy must be supplied to the atom.
- The amount of energy required to remove the an electron in the valence shell is the ionization energy or ionization potential.
- The first ionization energy is the energy needed to remove the most loosely bound electron in an atom in the ground state.
- The ionization energy measures the readiness of an atom to loose electrons.
Learn more:
Ionization energy brainly.com/question/5880605
#learnwithBrainly
n(2Fe2O3)=10g/319.374amu=0.03mol
n(4Fe+3O2)=0.03 mol
m(4Fe+2O2)=Mn=319.374×0.03=9.58=10
197 grams is the mass of one atom of gold
Answer:
99.3%
Explanation:
The percent by mass of the solute can be expressed as:
- % mass =
* 100%
And for this problem:
- Mass of Solute = Mass of sodium lithium chloride = 29 g
- Mass of Solvent = Mass of Water
So to calculate the percent by mass first we need to <u>calculate the mass of water</u>, to do so we use its<em> density</em> (1 g/L):
- 202 mL is equal to (202/1000) 0.202 L.
Density water = mass water / volume
- 1 g/L = mass water / 0.202 L
Now we have all the data required to <u>calculate the % mass:</u>
- % mass =
* 100 % = 99.3%