1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
3 years ago
7

A triangle has vertices at A(-2,4), B(-2,8), and C(6,4). If A’ has coordinates of (-0.25,0.5) after the triangle has been dilate

d with a center of dilation about the origin, which statements are true? Check all that apply
Mathematics
1 answer:
Kitty [74]3 years ago
3 0

Answer:

Now we need to find B' and C' by multiplying 0.125 with the x-coordinate and y-coordinate.

-----

x-coordinate of B is -2, y-coordinate of B is 8

x-coordinate of B'

y-coordinate of B'

So

-----

x-coordinate of C is 6 and y-coordinate of C is 4

x-coordinate of C'

y-coordinate of C'

So

Conclusion:

The below are the TRUE statements:

(i) The coordinates of C' are (0.75, 0.5)

(ii) The scale factor is 1/8

(iii) The coordinates of B' are (–0.25, 1).

Read more on Brainly.com - brainly.com/question/10679054#readmore

Step-by-step explanation:

You might be interested in
Can somebody help me on the questions I post please mark you brainliest​
GarryVolchara [31]

Answer:

on your profile?

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Find \(\int \dfrac{x}{\sqrt{1-x^4}}\) Please, help
ki77a [65]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/2867785

_______________


Evaluate the indefinite integral:

\mathsf{\displaystyle\int\! \frac{x}{\sqrt{1-x^4}}\,dx}\\\\\\ \mathsf{=\displaystyle\int\! \frac{1}{2}\cdot 2\cdot \frac{1}{\sqrt{1-(x^2)^2}}\,dx}\\\\\\ \mathsf{=\displaystyle \frac{1}{2}\int\! \frac{1}{\sqrt{1-(x^2)^2}}\cdot 2x\,dx\qquad\quad(i)}


Make a trigonometric substitution:

\begin{array}{lcl}
\mathsf{x^2=sin\,t}&\quad\Rightarrow\quad&\mathsf{2x\,dx=cos\,t\,dt}\\\\
&&\mathsf{t=arcsin(x^2)\,,\qquad 0\ \textless \ x\ \textless \ \frac{\pi}{2}}\end{array}


so the integral (i) becomes

\mathsf{=\displaystyle\frac{1}{2}\int\!\frac{1}{\sqrt{1-sin^2\,t}}\cdot cos\,t\,dt\qquad\quad (but~1-sin^2\,t=cos^2\,t)}\\\\\\
\mathsf{=\displaystyle\frac{1}{2}\int\!\frac{1}{\sqrt{cos^2\,t}}\cdot cos\,t\,dt}

\mathsf{=\displaystyle\frac{1}{2}\int\!\frac{1}{cos\,t}\cdot cos\,t\,dt}\\\\\\
\mathsf{=\displaystyle\frac{1}{2}\int\!\f dt}\\\\\\
\mathsf{=\displaystyle\frac{1}{2}\,t+C}


Now, substitute back for t = arcsin(x²), and you finally get the result:

\mathsf{\displaystyle\int\! \frac{x}{\sqrt{1-(x^2)^2}}\,dx=\frac{1}{2}\,arcsin(x^2)+C}          ✔

________


You could also make

x² = cos t

and you would get this expression for the integral:

\mathsf{\displaystyle\int\! \frac{x}{\sqrt{1-(x^2)^2}}\,dx=-\,\frac{1}{2}\,arccos(x^2)+C_2}          ✔


which is fine, because those two functions have the same derivative, as the difference between them is a constant:

\mathsf{\dfrac{1}{2}\,arcsin(x^2)-\left(-\dfrac{1}{2}\,arccos(x^2)\right)}\\\\\\
=\mathsf{\dfrac{1}{2}\,arcsin(x^2)+\dfrac{1}{2}\,arccos(x^2)}\\\\\\
=\mathsf{\dfrac{1}{2}\cdot \left[\,arcsin(x^2)+arccos(x^2)\right]}\\\\\\
=\mathsf{\dfrac{1}{2}\cdot \dfrac{\pi}{2}}

\mathsf{=\dfrac{\pi}{4}}         ✔


and that constant does not interfer in the differentiation process, because the derivative of a constant is zero.


I hope this helps. =)

6 0
3 years ago
3. Cuál de las siguientes fracciones NO es equivalente a 6/11:
Readme [11.4K]

Answer:

C no es equivalente a 6/11.

Step-by-step explanation:

24/42 no es equivalente a 6/11 porque, cuando se simplifica, no es igual a este número. Si usamos el número 6 para simplificar, la respuesta a 24/42 sería 4/7, que no es igual a 6/11.

7 0
3 years ago
Read 2 more answers
A film start at 7:15and finished at 9:30pm.How long is the film?
Mrac [35]

Answer:

2 hours and 15 minutes

Step-by-step explanation:

6 0
2 years ago
HELPPPP
MissTica

Answer:

$41.0625

Step-by-step explanation:

Divide $054.75 by 4

Multiply the answer to that (13.6875) by 3 or subtract 054.5 by 13.6873

The answer to that step is your answer.

8 0
3 years ago
Other questions:
  • M+4=17 May you guys please help me?
    10·1 answer
  • Which system of equations below can be used to solve the following problem?
    7·1 answer
  • The Melt in Your Mouth Chocolate Factory opens its doors each day at 7:00 am sharp. Sally arrived at the factory 10 minutes befo
    7·1 answer
  • Here is a list of numbers.
    13·1 answer
  • How do you do y=-1/2x+7<br> 5x-2y=10​
    6·1 answer
  • Please solve this a+7=2​
    6·2 answers
  • Solve for y.<br><br> –4(y − 15) + –6 = –10 What does y equal
    10·1 answer
  • Amir solved the following equation. describe the first mistake he made.
    7·1 answer
  • Question 1 (10 points)
    6·1 answer
  • A store is having a sale with 10% off everything.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!