1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Monica [59]
3 years ago
10

Point A is at (-7,5) and point is at (5,-1).

Mathematics
2 answers:
olga55 [171]3 years ago
8 0

Answer:

B = (3, 5)

Step-by-step explanation:

Point A is at (-7,5) and point C is at (5,-1).  Find the coordinates of point B on AC such that AB is 5 times longer than BC.  Then, B split AC in a 5:1 ratio.

rise = yC - yA = -1 - 5 = -6

run = xC - xA = 5 - (-7) = 12

c = 5/(5+1) = 5/6

B = (xA + c*run, yA + c*rise)

B = (-7 + 5/6*12, 5 + 5/6*-6)

B = (3, 5)

SVEN [57.7K]3 years ago
5 0

Answer: (3,0)

Step-by-step explanation: Point A is at (-7,5) and C is at (5-1). The horizontal displacement of AC is : 5-(-7)=12 If the horizontal displacement from A to C is 12 then horizontal displacement from A to B is 10. So point B is 10 units to the right of point A. The vertical displacement from A to C is -6, then the vertical displacement from A to B is -5. So point B is 5 units down from point A. Point A was at (-7,5) and point B is 10 units to the right and 5 units down from point A. B= (-7+10,5-5) = (3,0). The coordinates of B are (3,0).

You might be interested in
1. 8y^2-4y+1 divided by 2y-1
____ [38]
Q1. The answer is 4y+ \frac{1}{2y-1}

\frac{8y^{2}-4y+1 }{2y-1} = \frac{4y*2y-4y+1}{2y-1} = \frac{4y(2y-1)+1}{2y-1} = \frac{4y(2y-1)}{2y-1}+ \frac{1}{2y-1} =4y+ \frac{1}{2y-1}


Q2. The answer is 2a+3+ \frac{6}{a-1}

\frac{2 a^{2}+a+3 }{a-1} = \frac{a*2a-2a+3a+3}{a-1} = \frac{2a(a-1)+3a+3}{a-1}=  \frac{2a(a-1)}{a-1}+ \frac{3a+3}{a-1} = \\  \\ =2a+ \frac{3a+3}{a-1}=2a+ \frac{3a-3+3+3}{a-1}=2a+ \frac{3(a-1)+6}{a-1} =2a+ \frac{3(a-1)}{a-1} + \frac{6}{a-1}= \\  \\ =2a+3+ \frac{6}{a-1}
<span>

Q3. The answer is </span>2 x^{2} +5x+2<span>

</span>\frac{6 x^{3} +11 x^{2} -4x-4}{3x-2} = \frac{3x*2 x^{2}-2 x^{2} *2+15 x^{2} -4x-4  }{3x-2} = \frac{2 x^{2} (3x-2)+15 x^{2} -4x-4}{3x-2}= \\  \\ =  \frac{2 x^{2} (3x-2)}{3x-2} + \frac{15 x^{2} -4x-4}{3x-2} =2 x^{2} +\frac{15 x^{2} -4x-4}{3x-2}=2 x^{2} + \frac{15 x^{2} -10x+6x-4}{3x-2}= \\  \\ =2 x^{2} + \frac{5x*3x-5x*2+6x-4}{3x-2} =2 x^{2} + \frac{5x(3x-2)+3x*2-2*2}{3x-2} = \\  \\ =2 x^{2} + \frac{5x(3x-2)}{3x-2}  + \frac{3x*2-2*2}{3x-2} =2 x^{2} +5x+ \frac{2(3x-2)}{3x-2} =2 x^{2} +5x+2
<span>

Q4. The answer is 2x + 7

</span>\frac{6 x^{2} +11x-35}{3x-5} = \frac{6 x^{2} -10x+21x-35 }{3x-5} =  \frac{3 x *2x-5*2x+7*3x-7*5 }{3x-5} = \\  \\ = \frac{2x(3x-5)+7(3x-5)}{3x-5}= = \frac{(3x-5)(2x+7)}{3x-5} =2x+7
<span>

Q5. The answer is </span>x+1- \frac{3}{x-1}<span>
      
</span>\frac{ x^{2} -4}{x-1} = \frac{ x^{2} -x+x-1-3 }{x-1} = \frac{x*x-x+x-1-3}{x-1} = \frac{x(x-1)+(x-1)-3}{x-1} =  \\  \\ \frac{(x+1)(x-1)-3}{x-1} =  \frac{(x+1)(x-1)}{x-1}  -\frac{3}{x-1} =x+1- \frac{3}{x-1}


Q6. The answer is y^{2} -2y+3

\frac{ y^{3}-4 y^{2}+7y-6  }{y-2} = \frac{y* y^{2} -2y^{2}-2 y^{2} +7y-6 }{y-2} = \frac{y^{2}(y-2)-2 y^{2} +7y-6}{y-2}= \\  \\ = \frac{y^{2}(y-2)}{y-2}+   \frac{-2 y^{2} +7y-6}{y-2} = y^{2} + \frac{-2 y^{2} +4y + 3y-6}{y-2} =  \\  \\ =y^{2} + \frac{-2y*y-2y(-2)+3y-3*2}{y-2} = y^{2} + \frac{(-2y)(y-2)+3(y-2)}{y-2} = \\  \\ = y^{2} + \frac{(-2y+3)(y-2)}{y-2} = y^{2} +(-2y+3) =y^{2} -2y+3
<span>

Q7. The answer is </span>x^{2} +xy+ y^{2}}{x-y}<span>

</span>\frac{ x^{3} - \frac{x}{y}  y^{3} }{x-y} =  \frac{(x-y)( x^{2} +xy+ y^{2}) }{x-y} = \frac{ x^{2} +xy+ y^{2}}{x-y}
<span>

Q8. The answer is </span>(a^{2} +2ab+2b^{2})<span>

</span>\frac{a^{4} +4b^{4} }{a^{2}-2ab+2 b^{2} } = \frac{ (a^{2})^{2} +(2b)^{2}}{a^{2}-2ab+2 b^{2}} = \frac{(a^{2} -2ab+2b^{2})(a^{2} +2ab+2b^{2}) }{(a^{2} -2ab+2b^{2})} =(a^{2} +2ab+2b^{2})<span>


Q9. The answer is a^{n-8} - a^{-14}

</span>\frac{ (a^{2}) ^{n} - a^{n-6}  }{ a^{n+8} }= \frac{(a^{2}) ^{n} }{a^{n+8}}- \frac{ a^{n-6} }{a^{n+8}}    \\  \\   (x^{y}) ^{z}= x^{y*z}   \\  \\  \frac{ x^{y} }{ x^{z} } = x^{y-z}  \\  \\ &#10;\frac{(a^{2}) ^{n} }{a^{n+8}}- \frac{ a^{n-6} }{a^{n+8}}  =\frac{a^{2n}  }{a^{n+8}}- \frac{ a^{n-6} }{a^{n+8}}  =  a^{2n-(n+8)} - a^{n-6-(n+8)} = \\  \\ =a^{2n-n-8} - a^{n-6-n-8} = a^{n-8} - a^{-14}
5 0
3 years ago
The question is shown below ↓
masya89 [10]

Answer:

Step-by-step explanation:2+2=4

6 0
3 years ago
How can i factor this? <br> x^(2n)-2x^(n)+1
Tasya [4]
You can make it easier by replacing x^n with another variable, factoring, then putting x^n back in the end.

Using exponent and algebra rules, rewrite x^2n - 2x^n + 1 as
(x^n)^2 - (2 x x^2) + 1

Then, let x^n = m.

m^2 - 2m + 1

Now factor that: (m - 1)^2

And now put x^n back: (x^n - 1)^2
7 0
3 years ago
PLEASE HELP A rectangular region is removed from another rectangular region to create the shaded region shown below. Find the ar
Mars2501 [29]
<h3>Answer:  shaded region has area 107 square feet</h3>

================================================

Work Shown:

A = area of larger rectangle

A = length*width = 9*15 = 135 square feet

B = area of smaller rectangle

B = length*width = 7*4 = 28 square feet

C = area of shaded region

C = difference in areas of A and B

C = A - B = 135 - 28 = 107 square feet

4 0
3 years ago
Please answer all 3 questions iĺl give brainliest if right tysm
mariarad [96]

Answer:

1. 500

2. 126

3. 615

Step-by-step explanation:

Area of a parallelogram formula: A = bh

20 x 25 = 500

7 x 18 = 126

20.5 x 30 = 615

8 0
3 years ago
Read 2 more answers
Other questions:
  • How to do vertex form
    10·1 answer
  • Which number is represented by point E on the graph?
    9·2 answers
  • HELP! can someone help me with 2,3,and 4?
    5·2 answers
  • The graph for the function f(x) = -4 |x+2|+4 is shown below​
    6·1 answer
  • Given the information below, match the following items.
    14·2 answers
  • What was the cost of full coverage insurance in female in her 50s as a percentage of the same insurance in a male in his 30s if
    6·2 answers
  • Subtract -b+3 from -11-4
    11·1 answer
  • Allison is making treat bags for Valentine's Day. She uses 7 sheets of stickers
    8·1 answer
  • What the equation in point-slope form, matchs the graphed line shown
    7·1 answer
  • The home values are expected to decrease by 2% each year for the next ten years. Identify the appropriate multiplier.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!