Answer:
eccentrcity of orbit is 0.22
Explanation:
GIVEN DATA:
Initial velocity of satellite = 8333.3 m/s
distance from the sun is 600 km
radius of earth is 6378 km
as satellite is acting parallel to the earth therefore![\theta angle = 0](https://tex.z-dn.net/?f=%20%5Ctheta%20angle%20%3D%200)
and radial component of given velocity is zero
we have![h = r_o v_r_o = 6378+600 =6.97*10^6 m](https://tex.z-dn.net/?f=%20h%20%3D%20r_o%20v_r_o%20%3D%206378%2B600%20%3D6.97%2A10%5E6%20m)
h = 6.97*10^6 *8333.3 = 58.08*10^9 m^2/s
we know that
![\frac{1}{r} =\frac{GM}{h^2} \times ( i + \epsilon cos\theta)](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Br%7D%20%3D%5Cfrac%7BGM%7D%7Bh%5E2%7D%20%5Ctimes%20%28%20i%20%2B%20%5Cepsilon%20cos%5Ctheta%29)
![GM = gr^2 = 9.81*(6.37*10^6)^2 = 398*10^{12} m^3/s](https://tex.z-dn.net/?f=GM%20%3D%20gr%5E2%20%3D%209.81%2A%286.37%2A10%5E6%29%5E2%20%3D%20398%2A10%5E%7B12%7D%20m%5E3%2Fs)
so
![\frac{1}{6.97*10^6} =\frac{398*10^{12}}{(58.08*10^9)^2} \times ( i + \epsilon cos0)](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B6.97%2A10%5E6%7D%20%3D%5Cfrac%7B398%2A10%5E%7B12%7D%7D%7B%2858.08%2A10%5E9%29%5E2%7D%20%5Ctimes%20%28%20i%20%2B%20%5Cepsilon%20cos0%29)
solvingt for ![\epsilon)](https://tex.z-dn.net/?f=%20%5Cepsilon%29)
![\epsilon = 0.22)](https://tex.z-dn.net/?f=%5Cepsilon%20%3D%200.22%29)
therefore eccentrcity of orbit is 0.22
Answer: hello some parts of your question is missing attached below is the missing information
The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through aluminum radiator tubes of thickness d that release heat to the outside air by conduction. The average temperature gradient between the coolant and the outside air is about 130 K/mm . The term ΔT/d is called the temperature gradient which is the temperature difference ΔT between coolant inside and the air outside per unit thickness of tube
answer : Total surface area = 3/2 * area of old radiator
Explanation:
we will use this relation
K = ![\frac{Qd }{A* change in T }](https://tex.z-dn.net/?f=%5Cfrac%7BQd%20%7D%7BA%2A%20change%20in%20T%20%7D)
change in T = ΔT
therefore New Area ( A ) = 3/2 * area of old radiator
Given that the thermal conductivity is the same in the new and old radiators
Answer:
F = 0.0022N
Explanation:
Given:
Surface area (A) = 4,000mm² = 0.004m²
Viscosity = µ = 0.55 N.s/m²
u = (5y-0.5y²) mm/s
Assume y = 4
Computation:
F/A = µ(du/dy)
F = µA(du/dy)
F = µA[(d/dy)(5y-0.5y²)]
F = (0.55)(0.004)[(5-1(4))]
F = 0.0022N
The maximum shear stress in the tube when the power is transmitted through a 4: 1 gearing is 28.98 MPa.
<h3>What is power?</h3>
Power is the energy transferred per unit time.
Torque is find out by
P = 2πNT/60
10000 = 2π x 2000 x T / 60
T =47.74 N.m
The gear ratio Ne / Ns =4/1
Ns =2000/4 = 500
Ts =Ps x 60/(2π x 500)
Ts =190.96 N.m
Maximum shear stress τ = 16/π x (T / (d₀⁴ - d₁⁴))
τ max =T/J x D/2
where d₁ = 30mm = 0.03 m
d₀ = 30 +(2x 4) = 38mm =0.038 m
Substitute the values into the equation, we get
τ max = 16 x 190.96 x 0.038 /π x (0.038⁴ - 0.03⁴)
τ max = 28.98 MPa.
Thus, the maximum shear stress in the tube is 28.98 MPa.
Learn more about power.
brainly.com/question/13385520
#SPJ1
Answer:
a)
, b)
,
,
, c)
,
,
, ![\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmean%7D%20%3D%20%5Cfrac%7B1%20%2B%20%5Csqrt%7B2%7D%20%7D%7B6000%7D%5C%2Ch)
Explanation:
a) The total number of users that can be accomodated in the system is:
![n = \frac{10\,km^{2}}{1\,\frac{km^{2}}{cell} }\cdot (100\,\frac{users}{cell} )](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B10%5C%2Ckm%5E%7B2%7D%7D%7B1%5C%2C%5Cfrac%7Bkm%5E%7B2%7D%7D%7Bcell%7D%20%7D%5Ccdot%20%28100%5C%2C%5Cfrac%7Busers%7D%7Bcell%7D%20%29)
![n = 1000\,users](https://tex.z-dn.net/?f=n%20%3D%201000%5C%2Cusers)
b) The length of the side of each cell is:
![l = \sqrt{1\,km^{2}}](https://tex.z-dn.net/?f=l%20%3D%20%5Csqrt%7B1%5C%2Ckm%5E%7B2%7D%7D)
![l = 1\,km](https://tex.z-dn.net/?f=l%20%3D%201%5C%2Ckm)
Minimum time for traversing a cell is:
![\Delta t_{min} = \frac{l}{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7Bl%7D%7Bv%7D)
![\Delta t_{min} = \frac{1\,km}{30\,\frac{km}{h} }](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7B1%5C%2Ckm%7D%7B30%5C%2C%5Cfrac%7Bkm%7D%7Bh%7D%20%7D)
![\Delta t_{min} = \frac{1}{30}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%5C%2Ch)
The maximum time for traversing a cell is:
![\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmax%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%5Ccdot%20l%20%7D%7Bv%7D)
![\Delta t_{max} = \frac{\sqrt{2} }{30}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmax%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%20%7D%7B30%7D%5C%2Ch)
The approximate time is giving by the average of minimum and maximum times:
![\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmean%7D%20%3D%20%5Cfrac%7B1%2B%5Csqrt%7B2%7D%20%7D%7B2%7D%5Ccdot%5Cfrac%7Bl%7D%7Bv%7D)
![\Delta t_{mean} = \frac{1 + \sqrt{2} }{60}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmean%7D%20%3D%20%5Cfrac%7B1%20%2B%20%5Csqrt%7B2%7D%20%7D%7B60%7D%5C%2Ch)
c) The total number of users that can be accomodated in the system is:
![n = \frac{10\times 10^{6}\,m^{2}}{100\,m^{2}}\cdot (100\,\frac{users}{cell} )](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B10%5Ctimes%2010%5E%7B6%7D%5C%2Cm%5E%7B2%7D%7D%7B100%5C%2Cm%5E%7B2%7D%7D%5Ccdot%20%28100%5C%2C%5Cfrac%7Busers%7D%7Bcell%7D%20%29)
![n = 10000000\,users](https://tex.z-dn.net/?f=n%20%3D%2010000000%5C%2Cusers)
The length of each side of the cell is:
![l = \sqrt{100\,m^{2}}](https://tex.z-dn.net/?f=l%20%3D%20%5Csqrt%7B100%5C%2Cm%5E%7B2%7D%7D)
![l = 10\,m](https://tex.z-dn.net/?f=l%20%3D%2010%5C%2Cm)
Minimum time for traversing a cell is:
![\Delta t_{min} = \frac{l}{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7Bl%7D%7Bv%7D)
![\Delta t_{min} = \frac{0.01\,km}{30\,\frac{km}{h} }](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7B0.01%5C%2Ckm%7D%7B30%5C%2C%5Cfrac%7Bkm%7D%7Bh%7D%20%7D)
![\Delta t_{min} = \frac{1}{3000}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmin%7D%20%3D%20%5Cfrac%7B1%7D%7B3000%7D%5C%2Ch)
The maximum time for traversing a cell is:
![\Delta t_{max} = \frac{\sqrt{2}\cdot l }{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmax%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%5Ccdot%20l%20%7D%7Bv%7D)
![\Delta t_{max} = \frac{\sqrt{2} }{3000}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmax%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B2%7D%20%7D%7B3000%7D%5C%2Ch)
The approximate time is giving by the average of minimum and maximum times:
![\Delta t_{mean} = \frac{1+\sqrt{2} }{2}\cdot\frac{l}{v}](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmean%7D%20%3D%20%5Cfrac%7B1%2B%5Csqrt%7B2%7D%20%7D%7B2%7D%5Ccdot%5Cfrac%7Bl%7D%7Bv%7D)
![\Delta t_{mean} = \frac{1 + \sqrt{2} }{6000}\,h](https://tex.z-dn.net/?f=%5CDelta%20t_%7Bmean%7D%20%3D%20%5Cfrac%7B1%20%2B%20%5Csqrt%7B2%7D%20%7D%7B6000%7D%5C%2Ch)