1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amiraneli [1.4K]
3 years ago
12

Demonstreaza in 20 de propoziti ca snoava pacala si zarzarele boerului e o snoava

Engineering
1 answer:
S_A_V [24]3 years ago
4 0

Answer:

oops i dnt understand this language.

You might be interested in
How can the direction of rotation of a split-phase motor be changed? *
S_A_V [24]

Nejejenshsjsjsjs:

Explanation:rjejsjjejej

8 0
3 years ago
Read 2 more answers
A beam has been fixed to the floor by the pin at B and the roller at A as shown in figure 1 below.​
ahrayia [7]
What figure below???
3 0
2 years ago
The diameter of an extruder barrel = 85 mm and its length = 2.00 m. The screw rotates at 55 rev/min, its channel depth = 8.0 mm,
babunello [35]

Answer:

Qx = 9.109.10^5 \times 10^{-6} m³/s  

Explanation:

given data

diameter = 85 mm

length = 2 m

depth = 9mm

N = 60 rev/min

pressure p = 11 × 10^6 Pa

viscosity n = 100 Pas

angle = 18°

so  Qd will be

Qd = 0.5 × π² ×D²×dc × sinA × cosA   ..............1

put here value and we get

Qd = 0.5 × π² × ( 85 \times 10^{-3} )²× 9  \times 10^{-3}  × sin18 × cos18

Qd = 94.305 × 10^{-6} m³/s

and

Qb = p × π × D × dc³ × sin²A ÷  12  × n × L    ............2

Qb = 11 × 10^{6} × π × 85 \times 10^{-3}  × ( 9  \times 10^{-3} )³ × sin²18 ÷  12  × 100 × 2

Qb = 85.2 × 10^{-6} m³/s

so here

volume flow rate Qx = Qd - Qb   ..............3

Qx =  94.305 × 10^{-6}  - 85.2 × 10^{-6}  

Qx = 9.109.10^5 \times 10^{-6} m³/s  

8 0
2 years ago
In a food processing facility, a spherical container of inner radius r1 = 40 cm, outer radius r2 = 41 cm, and thermal conductivi
Rashid [163]

Answer:

attached below

Explanation:

5 0
3 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
Other questions:
  • The uniform dresser has a weight of 90 lb and rests on a tile floor for which the coefficient of static friction is 0.25. If the
    6·1 answer
  • Draw an ERD for each of the following situations. (If you believe that you need to make additional assumptions, clearly state th
    15·1 answer
  • he Weather Channel reports that it is a hot, muggy day with an air temperature of 90????F, a 10 mph breeze out of the southwest,
    6·1 answer
  • What is your employer required to have on fixed ladders that extend more than 24 feet in the workplace?
    15·2 answers
  • Sadadasdasdasdasdadaaasd1
    14·1 answer
  • 1)A wheel is used to turn a valve stem on a water valve. If the wheel radius is 1 foot and the stem, (axle), radius is .5 inches
    10·1 answer
  • 2. Ang sangay na nagbibigay-kahulugan sa mga batas ng bansane
    8·1 answer
  • Christopher has designed a fluid power system that repeatedly gets clogs. Which of the following objects should he choose to add
    13·1 answer
  • ​please how to drawing mechanical drawing after connecting the all parts thanks
    6·1 answer
  • Select the correct answer. Which of the following devices is a simple machine? A.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!