Answer and Explanation:
Let A denote its switch first after that we will assume B which denotes the next switch and then we will assume C stand for both the bulb. we assume 0 mean turn off while 1 mean turn on, too. The light is off, as both switches are in the same place. This may be illustrated with the below table of truth:
A B C (output)
0 0 0
0 1 1
1 0 1
1 1 0
The logic circuit is shown below
C = A'B + AB'
If the switches are in multiple places the bulb outcome will be on on the other hand if another switches are all in the same place, the result of the bulb will be off. This gate is XOR. The gate is shown in the diagram adjoining below.
Answer:
B- extreme fit, close fit, adjustable fit
Explanation:
A human-fit design typically involves the process of manufacturing or producing products (tools) that are easy to use by the end users. Therefore, human-fit designs mainly deals with creating ideas that makes the use of a particular product comfortable and convenient for the end users.
The design for human-fit strategies include; extreme fit, close fit and adjustable fit.
Hence, when the aforementioned strategies are properly integrated into a design process, it helps to ensure the ease of use of products and guarantees comfort for the end users.
Answer:a
a) Vo/Vi = - 3.4
b) Vo/Vi = - 14.8
c) Vo/Vi = - 1000
Explanation:
a)
R1 = 17kΩ
for ideal op-amp
Va≈Vb=0 so Va=0
(Va - Vi)/5kΩ + (Va -Vo)/17kΩ = 0
sin we know Va≈Vb=0
so
-Vi/5kΩ + -Vo/17kΩ = 0
Vo/Vi = - 17k/5k
Vo/Vi = -3.4
║Vo/Vi ║ = 3.4 ( negative sign phase inversion)
b)
R2 = 74kΩ
for ideal op-amp
Va≈Vb=0 so Va=0
so
(Va-Vi)/5kΩ + (Va-Vo)74kΩ = 0
-Vi/5kΩ + -Vo/74kΩ = 0
Vo/Vi = - 74kΩ/5kΩ
Vo/Vi = - 14.8
║Vo/Vi ║ = 14.8 ( negative sign phase inversion)
c)
Also for ideal op-amp
Va≈Vb=0 so Va=0
Now for position 3 we apply nodal analysis we got at position 1
(Va - Vi)/5kΩ + (Va - Vo)/5000kΩ = 0 ( 5MΩ = 5000kΩ )
so
-Vi/5kΩ + -Vo/5000kΩ = 0
Vo/Vi = - 5000kΩ/5kΩ
Vo/Vi = - 1000
║Vo/Vi ║ = 1000 ( negative sign phase inversion)
This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ 
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Answer:
<u>Assistants</u><u> </u><u>works alongside and assists the engineers.</u>