The answer is allotropes. Hope this helps. Have a great day.
There are two equal forces of gravity between the Earth and the Moon.
One force pulls the Moon toward the Earth.
The other force pulls the Earth toward the Moon.
If only this gravity suddenly switched off, then the moon would
continue to orbit the Sun, very much as it does now.
If ALL gravity suddenly switched off, then . . .
-- the Moon would stop orbiting the Earth and would sail away, in
a straight line and at the speed it had when gravity disappeared;
-- the Earth would stop orbiting the Sun and would sail away, in
a straight line and at the speed it had when gravity disappeared;
-- all the gases surrounding the Earth ... which we call "air" ... would
start drifting away, and expanding into a giant cloud of gas, and stop
being an atmosphere;
-- the Sun would completely fall apart, expand into a giant cloud of gas,
and stop being a star.
Hello!
For the explanation of this energy conservation exercise, where we'll use <u>energy conservation law</u>, let's see what this principle proposes.
How you should know, mechanical energy conserves in every point, that is to say mechanical energy is same in A point like B point. (Mechanical energy will be represented by "Me")
Once time we know that, let's take the 220 Joules momentum like A point, and when 55 Joules momentum like B point.
Then, let's use the <u>energy conservation principle:</u>
Me(A) = Me(B)
- We know Mechanical energy in A point, so just lets replace according to our data:
220 J = Me(B)
- In B point, we know kinetic energy, but <u>we dont know gravitational potential energy</u>, so lets descompose Mechanical energy, into kinetic energy and gravitational potential energy:
220 J = Ke + Gpe
- We know kinetic energy value, so lets replace it:
220 J = 55 J + Gpe
- Finally, just clean Gpe and resolve it:
Gpe = 220 J - 55 J = 165 J
Gravitational potential energy is of One hundred sixty five Joules <u>(165 J).</u>
║Sincerely, ChizuruChan║