The sun's rays hit the Earth at a extreme angle, which causes the days to become shorter, so yes, the sun's rays do hit the Earth at a extreme angle.
How an atom reacts chemically depends on how willing it is to share electrons with others.
It’s electrons
Answer:
Q = 0.50
No
Left
Explanation:
At a generic reversible equation
aA + bB ⇄ cC + dD
The reaction coefficient (Q) is the ratio of the substances concentrations:
![Q = \frac{[C]^c*[D]^d}{[A]^a*[B]^b}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5BC%5D%5Ec%2A%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%2A%5BB%5D%5Eb%7D)
Solids and liquid water are not considered in this calculus.
When the reaction achieves equilibrium (concentrations are constant), the Q value is named as Kc, which is the equilibrium constant of the reaction. If Q > Kc, it indicates that the concentration of the products is higher, so, the reaction must progress to the left and form more reactants; if Q < Kc, than the concentrations of the reactants, are higher, so, the reaction progress to the right.
In this case:
Q = ![\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)

Q = 0.50
So, Q > Kc, the reaction is not at equilibrium and it progresses to the left.
Answer:
<h3>The answer is 7.85 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

volume = final volume of water - initial volume of water
volume = 13.91 - 12 = 1.91 mL
We have

We have the final answer as
<h3>7.85 g/mL</h3>
Hope this helps you
Answer:
The attractive forces must be overcome are :
Explanation:
For the compound to dissolve the attractive forces existing between atoms of the compound must be reduced
<u>CsI is ionic compound </u><em>and its molecules are held together by ionic(electrostatic) force . These force must be weakened for its dissolution</em>
Forces in HF <em>:</em>
<em>1 .Hydrogen Bonding : In HF strong intermolecular Hydrogen Bonding exist between the electronegative F and Hydrogen</em>
2. Dipole - dipole : <em>HF is polar . So it is a permanent dipole and has dipole diople interaction</em>