The two linear equations represented in system A as :
3 x + 2 y =3 -------(1)
- 2 x - 8 y = -1 ------(2)
(1) × 2 + (2) × 3 gives
⇒ 6 x + 4 y - 6 x - 24 y = 6 -3
⇒ - 20 y = 3
⇒ y = 
Putting the value of y in equation (1), we get

Two linear equation represented in system B is:
3. -x - 14 y =1
4. - 2 x - 8 y = -1
-2 ×Equation (3) + Equation (4)=
2 x +28 y- 2 x - 8 y= -2 -1
⇒ 20 y = -3
⇒y =
Putting the value of y in equation (3),we get

As Two system , that is system (A) and System (B) has same solution.
By looking at all the options , i found that Option (D) is correct. The two system will have the same solution because the first equation of System B is obtained by adding the first equation of System A to 2 times the second equation of System A.
1) given function
y = - 2 ^ ( -x + 2) + 1
2) domain: domain is the set of the x-values for which the function is defined.
The exponential function is defined for all the real numbers, so the domain of the given function is all the real numbers.
3) x-intercept => y = 0
=> y = - 2 ^ ( -x + 2) + 1 = 0 => 2^ ( -x + 2) = 1
=> - x + 2 = 0 => x = 2
The x-intercept is x = 0
4) y-intercept => x = 0
=> y = - 2 ^ ( -x + 2) + 1= - 2 ^ ( 0 + 2) 1 = - (2)^(2) + 1 =- 4 + 1 = - 3
=> The y-intercept is - 3
5) limit when x -> negative infinite
Lim f(x) when x -> ∞ = - ∞
6) limit when x -> infinite
Lim f(x) when x - > infinite = 1
=> asymptote = y = 1
7) range is the set of values of the fucntion: y
Given that the function is strictly decreasing from -∞ to ∞, the range is from - ∞ to less than 1
Range (-∞,1)
1. 2n + 2*5 =2
2. 2n + 10 = 2
3. 2n = 2 -10
4. 2n= -8
5. n = -8/2
6. n = -4
Answer: <em>59.2</em>
Step-by-step explanation:
<em>Take your equation</em>
<em>z2+8y</em>
<em>Now plug in the values given</em>
<em>(12)2+8(4.4)</em>
<em>24+35.2</em>
<em>59.2</em>