<u></u>
corresponds to TR. correct option b.
<u>Step-by-step explanation:</u>
In the given parallelogram or rectangle , we have a diagonal RT . We need to find which side is in correspondence with side/Diagonal RT of parallelogram URST .
<u>Side TU:</u>
In triangle UTR , we see that TR is hypotenuse and is the longest side among UR & TU . So , TR can never be equal in length to UR & TU . So there's no correspondence of Side TU with RT.
<u>Side TR:</u>
Since, direction of sides are not mentioned here , we can say that TR & RT is parallel & equal to each other . So , TR is in correspondence with side/Diagonal RT of parallelogram URST .
<u>Side UR:</u>
In triangle UTR , we see that TR is hypotenuse and is the longest side among UR & TU . So , TR can never be equal in length to UR & TU . So there's no correspondence of Side UR with RT.
Answer:
70%
Step-by-step explanation:
49/70 = 0.7
0.7*100 = 70%
Answer:
125 m/min
Step-by-step explanation:
Find the rate (speed) as follows:
25 meters
--------------------- = (125/1) meters/min = 125 m/min
(1/5) minute
This is equivalent to about 380 ft/min