The thermal process that occurs when pressure and volume are variable, while the temperature remains constant is known as an isothermal process. Due to the change in temperature being zero, the internal energy of the system does not change. Isothermal processes can be carried out adiabatically or non-adiabatically. (An adiabatic process is where the heat energy moving through the boundary of a system is 0)
Answer:
a) k = 120 N / m
, b) f = 0.851 Hz
, c) v = 1,069 m / s
, d) x = 0
, e) a = 5.71 m / s²
, f) x = 0.200 m
, g) Em = 2.4 J
, h) v = -1.01 m / s
Explanation:
a) Hooke's law is
F = k x
k = F / x
k = 24.0 / 0.200
k = 120 N / m
b) the angular velocity of the simple harmonic movement is
w = √ k / m
w = √ (120 / 4.2)
w = 5,345 rad / s
Angular velocity and frequency are related.
w = 2π f
f = w / 2π
f = 5.345 / 2π
f = 0.851 Hz
c) the equation that describes the movement is
x = A cos (wt + Ф)
As the body is released without initial velocity, Ф = 0
x = 0.2 cos wt
Speed is
v = dx / dt
v = -A w sin wt
The speed is maximum for sin wt = ±1
v = A w
v = 0.200 5.345
v = 1,069 m / s
d) when the function sin wt = -1 the function cos wt = 0, whereby the position for maximum speed is
x = A cos wt = 0
x = 0
e) the acceleration is
a = d²x / dt² = dv / dt
a = - Aw² cos wt
The acceleration is maximum when cos wt = ± 1
a = A w²
a = 0.2 5.345
a = 5.71 m / s²
f) the position for this acceleration is
x = A cos wt
x = A
x = 0.200 m
g) Mechanical energy is
Em = ½ k A²
Em = ½ 120 0.2²
Em = 2.4 J
h) the position is
x = 1/3 A
Let's calculate the time to reach this point
x = A cos wt
1/3 A = A cos 5.345t
t = 1 / w cos⁻¹(1/3)
The angles are in radians
t = 1.23 / 5,345
t = 0.2301 s
Speed is
v = -A w sin wt
v = -0.2 5.345 sin (5.345 0.2301)
v = -1.01 m / s
i) acceleration
a = -A w² sin wt
a = - 0.2 5.345² cos (5.345 0.2301)
a = -1.91 m / s²
Answer:
0.78333 m/s in the opposite direction
1.566 m/s in the same direction
Explanation:
= Mass of penny = 0.0025 kg
= Mass of nickel = 0.005 kg
= Initial Velocity of penny = 2.35 m/s
= Initial Velocity of nickel = 0 m/s
= Final Velocity of penny
= Final Velocity of nickel
As momentum and Energy is conserved


From the two equations we get

The final velocity of the penny is 0.78333 m/s in the opposite direction

The final velocity of the nickel is 1.566 m/s in the same direction
This is a Physics question where we need to figure out how many meters Cam can run per second. To figure this out we divide the distance by the change in time.
40/5.79 = 6.9 meters per second approximately.