Answer:
A) - 1.8 m/s
Explanation:
As we know that whole system is initially at rest and there is no external force on this system
So total momentum of the system must be conserved
so we will have

now plug in all data into above equation



so correct answer is
A) - 1.8 m/s
The neutrons are inside the nucleus, have no charge, and have mass.
Answer:
In an inductive circuit, when frequency increases, the circuit current decreases and vice versa.
Explanation:
<span>Energy of an electromagnetic wave depends on it's "Frequency"
Hope this helps!</span>
Answer:
18.1 × 10⁻⁶ A = 18.1 μA
Explanation:
The current I in the wire is I = ∫∫J(r)rdrdθ
Since J(r) = Br, in the cylindrical wire. With width of 10.0 μm, dr = 10.0 μm. r = 1.20 mm. We have a differential current dI. We integrate first by integrating dθ from θ = 0 to θ = 2π.
So, dI = J(r)rdrdθ
dI/dr = ∫J(r)rdθ = ∫Br²dθ = Br²∫dθ = 2πBr²
Now I = (dI/dr)dr at r = 1.20 mm = 1.20 × 10⁻³ m and dr = 10.0 μm = 0.010 mm = 0.010 × 10⁻³ m
I = (2πBr²)dr = 2π × 2.00 × 10⁵ A/m³ × (1.20 × 10⁻³ m)² × 0.010 × 10⁻³ m = 0.181 × 10⁻⁴ A = 18.1 × 10⁻⁶ A = 18.1 μA