Answer:
x = 727.5 km
Explanation:
With the conditions given using trigonometry, we can find the tangent
tan θ = CO / CA
With CO the opposite leg and CE is the adjacent leg which is the distance from the Tierral to Sun
D =150 10⁶ km (1000m / 1 km)
D = 150 10⁹ m.
We must take the given angle to radians.
1º = 3600 arc s
π rad = 180º
θ = 1 arc s (1º / 3600 s arc) (pi rad / 180º) =
θ = 4.85 10⁻⁶ rad
That angle is extremely small, so we can approximate the tangent to the angle
θ = x / D
x = θ D
x = 4.85 10-6 150 109
x = 727.5 103 m
x = 727.5 km
Answer:
Drawing the triangle:
H / x = tan 52.2 = 1.29
H / (4.6 - x) = tan 28.8 = .550
H = 1.29 x
H = .55 * 4.6 - .55 x
1.84 x = 2.53 combining equations
x = 1.38
4.6 - 1.38 = 3.22
Total base of triangle = 1.38 + 3.22 = 4.6
H / x = tan 52,2 = 1.29
H = 1.29 * 1.38 = 1.78 height of triangle
Check:
1.78 / 3.22 = tan 28.9
This agrees with the given value of 28.8
Answer:

Explanation:
The acceleration of the block can be found by the kinematics equations:

Since the plane is frictionless, the only force acting on the block along the motion of the block is its weight.

155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
The chemical reaction causes electricity to flow through the terminals to the load attached. Some of the acid in the battery remains on the plates as it flows through. When the battery is recharged the acid is returned to the liquid solution to provide more power later.