Answer;
C. The brightness of each bulb would remain the same even though the total resistance of the circuit would decrease.
Explanation;
-If light bulbs are connected in parallel to a voltage source, the brightness of the individual bulbs remains more-or-less constant as more and more bulbs are added to the circuit.
-The current increases as more bulbs are added to the circuit and the overall resistance decreases. In addition, if one bulb is removed from the circuit the other bulbs do not go out. Each bulb is independently linked to the voltage source
Answer:
(a) r = 1.062·R
= 
(b) r = 
(c) Zero
Explanation:
Here we have escape velocity v
given by
and the maximum height given by

Therefore, when the initial speed is 0.241v
we have
v =
so that;
v² =
v² = 
is then

Which gives
or
r = 1.062·R
(b) Here we have

Therefore we put
in the maximum height equation to get

From which we get
r = 1.32·R
(c) The we have the least initial mechanical energy, ME given by
ME = KE - PE
Where the KE = PE required to leave the earth we have
ME = KE - KE = 0
The least initial mechanical energy to leave the earth is zero.
Answer:
26.9 Pa
Explanation:
We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:
(1)
where
is the cross-sectional area of the 1st section of the pipe
is the cross-sectional area of the 2nd section of the pipe
is the velocity of the 1st section of the pipe
is the velocity of the 2nd section of the pipe
In this problem we have:
is the velocity of blood in the 1st section
The diameter of the 2nd section is 74% of that of the 1st section, so

The cross-sectional area is proportional to the square of the diameter, so:

And solving eq.(1) for v2, we find the final velocity:

Now we can use Bernoulli's equation to find the pressure drop:

where
is the blood density
are the initial and final pressure
So the pressure drop is:

Answer:
1 hour and 25 minutes
Explanation:
hopefully this helps ,, but like WHY phineas and ferb hshjdshjdhdhdbd im so childish
In solid and liquid the matter can occupy the 90 in³ and 157.1 in³ volume.
The matter in gaseous state can be expanded to occupy the volumes of the container.
<h3>
Volume of each of the container</h3>
The volume of each of the container is calculated as follows;
<h3>Volume of the rectangular container</h3>
V = 5 in x 6 in x 3 in
V = 90 in³
<h3>Volume of the cylindrical container</h3>
V = πr²h
V = (π)(2.5 in)²(8 in)
V = 157.1 in³
<h3>Volume of the matter</h3>
Vm = 3 in x 4 in x 5 in
Vm = 60 in³
<h3>Matter in solid and liquid state</h3>
Matter has fixed volume in solid and liquid state.
In solid and liquid the matter can occupy the 90 in³ and 157.1 in³ volume.
<h3>Matter in gaseous state</h3>
Matter has no definite volume in gaseous state.
The matter in gaseous state can be expanded to occupy the volumes of the container.
Learn more about states of matter here:
#SPJ1