Answer:
The answer is 375.54 g of AgBr
Explanation:
Mass (g) = Concentration (mol/L) x volume (L) x Molecular Weight of AgBr (g/mol)
Mass = 2M x 1L x 187.77 g/mol
Mass = 375.54g
Answer:
4.1x10⁻⁵
Explanation:
The dissociation of an acid is a reversible reaction, and, because of that, it has an equilibrium constant, Ka. For a generic acid (HA), the dissociation happens by:
HA ⇄ H⁺ + A⁻
So, if x moles of the acid dissociates, x moles of H⁺ and x moles of A⁻ is formed. the percent of dissociation of the acid is:
% = (dissociated/total)*100%
4.4% = (x/[HA])*100%
But x = [A⁻], so:
[A⁻]/[HA] = 0.044
The pH of the acid can be calcualted by the Handersson-Halsebach equation:
pH = pKa + log[A⁻]/[HA]
3.03 = pKa + log 0.044
pKa = 3.03 - log 0.044
pKa = 4.39
pKa = -logKa
logKa = -pKa
Ka = 
Ka = 
Ka = 4.1x10⁻⁵
Answer:
1. final pressure = 0.259atm
2. 196.84mmHg
Explanation:
Using Boyle's law of equation
P1V1 = P2V2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (mL)
V2 = final volume (mL)
According to the information given in this question:
V1 = 105mL
V2 = 352mL
P1 = 0.871atm
P2 = ?
Using P1V1 = P2V2
P2 = P1V1/V2
P2 = 0.871 × 105/352
P2 = 91.455/352
P2 = 0.2598
P2 = 0.259atm
To convert 0.259atm of the gas into mmHg, we multiply the value in atm by 760.
Hence, 0.259 × 760
= 196.84mmHg
Answer:
Getting coated with tarnish
Explanation:
Silver, the original substance is combining with a new substance tarnish to make a whole new chemical.