1250kgm²/s is the motional kinetic energy of a 25kg object moving at a speed of 10m/s
Kinetic energy of an object is defined as the energy which is possessed when that is in motion. It is the energy of the kinetic mass of an object. Kinetic energy is never negative and is a scalar quantity. That is, it shows only size, not orientation.
Given to us
Mass of the object, m=25kg
Velocity of the object, v=10m/s
K.E=1/2x25x10²
=1250
Kinetic energy is directly proportional to the mass and velocity squared (K.E.) of an object. =1/2xMxV². If the mass is in kilograms and the velocity is in meters/second, then the kinetic energy is in kilograms - meters squared/second.
Learn ore about Kinetic energy here brainly.com/question/25959744
#SPJ9
Answer:
D) 4
Explanation:
Roots of a polynomial must be factors of the last term.
In this case, the factors of 6 are +1, -1, +2, -2, +3, -3, +6, -6. The only factor that doesn't show up, given the options, is 4. This means that D is the correct answer.
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change