Answer:
True
Explanation:
Pre-questioning may help a reader focus on information s/he hopes to find in the reading selection.
Answer:
When the blood and the dialysate are flowing in the same direction, as the the dialysate and the blood move away from the region of higher concentration of the urea, to a region distant from the source, the concentration of urea in the blood stream and in the dialysis reach equilibrium and diffusion across the semipermeable membrane stops within the higher filter regions such as II, III, IV or V
However, for counter current flow, as the concentration of the urea in the blood stream becomes increasingly lesser the, it encounters increasingly unadulterated dialysate coming from the dialysate source, such that diffusion takes place in all regions of the filter
Explanation:
Answer:
a) b = -5
b) slope = 3/2
Explanation:
a) The equation of a line is given as y = mx + b, where m is the slope of the line and b is the intercept on the y axis.
Given that y = 3x + b and it passes through the point (2, 1). Hence when x = 2, y = 1. Therefore, substituting for x and y:
1 = 3(2) + b
1 = 6 + b
b = 1 - 6
b = -5
b) The equation of a line passing through two points (
) and
is given by:

The equation of the line passing through the two points (0,3) and (4,9) is:

Comparing y = (3/2)x + 3 with y = mx + b, the slope (m) is 3/2
It is fine to use the equation given by Plitter, since we are told that the mass is about the same as it is now, and I seriously doubt the original question wants the student to go into relativistic effects, electron degeneracy pressure and magnetic effects that govern a real white dwarf star.
There is no need to make it unnecessarily complicated, when the question is set at high school level. The question asks, given a particular radius, and a given mass, what will the density be (which in this case will be the average density). To answer the question, one needs to know the mass of the sun (which is about 2×1030 Kg. One needs to convert the diameter to a radius, and then calculate the spherical volume of the white dwarf. Then one can use the formula given above, namely density=mass/volume
Answer:

Explanation:
As we know by Bernoulli's principle


here we know that

also we know that


now we have

