Answer:
In the long run, ou expect to lose $4 per game
Step-by-step explanation:
Suppose we play the following game based on tosses of a fair coin. You pay me $10, and I agree to pay you $n^2 if heads comes up first on the nth toss.
Assuming X be the toss on which the first head appears.
then the geometric distribution of X is:
X geom(p = 1/2)
the probability function P can be computed as:
where
n = 1,2,3 ...
If I agree to pay you $n^2 if heads comes up first on the nth toss.
this implies that , you need to be paid
∵ X geom(p = 1/2)
Given that during the game play, You pay me $10 , the calculated expected loss = $10 - $6
= $4
∴
In the long run, you expect to lose $4 per game
Answer:
4
Step-by-step explanation:
Answer:
x² + 10x + 25
Explanation:
Before we begin, remember the following:
(a + b)(a + b) = (a + b)² = a² + 2ab + b²
Now, for the given we have:
(x + 5)(x + 5)
We can note that the two brackets are identical.
Therefore, we can apply the above rule as follows:
(x + 5)(x + 5) = (x + 5)²
= (x)² + 2(x)(5) + (5)²
= x² + 10x + 25
Hope this helps :)
Answer:
Download Photomath
Step-by-step explanation:
To Answer Easily and follow me :)