<span>The moment of inertia of the large sphere will be twice that of the smaller sphere.
The formula for the moment of inertia for a solid sphere is:
I = (2/5)mr^2
where
I = moment of inertia
m = mass
r = radius
Since both spheres have the same diameter, they also have the same radius, so the only change is their mass. And the moment of inertia is directly proportional to their mass as shown by the above formula. So the sphere with twice the mass will have twice the moment of inertia, or 2 times.</span>
Answer:
25 mm = 0 deg C
200 mm = 100 deg C
200 - 25 = 175 = change in thread per 100 deg C
95 - 25 = 70 mm - change in thread from 0 deg C
70 / 175 * 100 = 40 deg C final temperature at 95 mm
Lear vv
F
B
C
D
A
E
G
greatest pressure ^^
I’m really sorry if I’m wrong
Answer:
A model rocket is launched with an initial upward velocity of 215 ft/s.
Explanation:
Answer:
The metal will melt but their will be no change in temperature.
Explanation:
The metal is at its melting temperature which means it is still in solid phase but have to cross the enthalpy of its condensation at this same temperature to convert into liquid phase.
<u>On supplying heat, the metal's temperature will not change as the heat will be required as enthalpy of condensation to melt the solid to liquid at the melting temperature.</u>