Answer:
No he should not attempt the pass
Explanation:
Let t be the time it takes for the car to pass the truck. The driver should ONLY attempt to pass when the distance covered by himself plus the distance covered by the oncoming car is less than or equal 400 m (a near miss)
At acceleration of 1m/s2 and a clear distance of 10 + 20 + 10 = 40 m, we can use the following equation of motion to estimate the time t in seconds




Within this time frame, the first car would have traveled a total distance of the clear distance (40m) plus the distance run by the truck, which is
8.94 * 25 = 223.6m
So the total distance traveled by the first car is 223.6 + 40 = 263.6m
The distance traveled by the 2nd car within 8.94 s at rate of 25m/s is
8.94 * 25 = 223.6 m
So the total distance covered by both cars within this time frame
223.6 + 263.6 = 487.2m > 400 m
So no, he should not attempt the pass as we will not clear it in time.
there are different types of power so ill show you all the examples of power.
Answer:
t = 1,144 s
Explanation:
The simple pendulum consists of an inextensible string with a mass at the tip, the angular velocity of this is
w = √( L / g)
The angular velocity is related to the frequency and period
w = 2π f
f = 1 / T
w = 2π / T
Let's replace
2π / T = √ (L / g)
T = 2π √ (g / L)
Let's calculate
T = 2π √ (9.81 / 18.5)
T = 4,576 s
The definition of period in the time it takes the ball to come and go to a given point (a revolution) in our case we go from the end to the middle point that is a quarter of the path
t = T / 4
t = 4,576 / 4
t = 1,144 s
Complete Question
You are performing a double slit experiment very similar to the one from DL by shining a laser on two nattow slits spaced
meters apart. However, by placing a piece of crystal in one of the slits, you are able to make it so that the rays of light that travel through the two slits are Ï out of phase with each other (that is to say, Ao,- ). If you observe that on a screen placed 4 meters from the two slits that the distance between the bright spot closest to center of the pattern is 1.5 cm, what is the wavelength of the laser?
Answer:
The wavelength is 
Explanation:
From the question we are told that
The distance of slit separation is
The distance of the screen is 
The distance between the bright spot closest to the center of the interference is 
Generally the width of the central maximum fringe produced is mathematically represented as

=> 
=> 
=> 