1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SOVA2 [1]
3 years ago
15

A light rope is attached to a block with mass 3.60 kg that rests on a frictionless, horizontal surface. The horizontal rope pass

es over a frictionless, massless pulley, and a block with mass m is suspended from the other end. When the blocks are released, the tension in the rope is 18.8 N .
(a) Draw two free-body diagrams: one for each block.
(b) What is the acceleration of either block?
(c) Find m.
(d) How does the tension compare to the weight of the hanging block?
Physics
1 answer:
Readme [11.4K]3 years ago
4 0

Answer and Explanation:

(a) The fre-body diagrams for each block is shown below. In the block of mass 3.60 kg, there are 3 forces acting on it: horizontal force due to the rope (F_{t}), vertical gravitational force (F_{g}) and vertical normal force (F_{n}), due to the surface. Since there is no vertical movement, F_{g} and F_{n} cancels it out. So, for this block, net force is horizontal due to the rope F_{t}.

The block of mass m is hanging from the pulley, so there is the force of the rope (F_{t}) and the gravitational force (F_{g}). Both are vertical, because there is no surface "holding" block m.

(b) Since both blocks are attached to each other, the acceleration will be the same. To calculate it, we use the Second Law of Motion:

F_{r}=m.a

a=\frac{F_{r}}{m}

a=\frac{18.8}{3.6}

a = 5.22

The acceleration of either block is 5.22 m/s².

(c) Block m has 2 forces acting on it: tension and gravitational force. Gravitational force is the force of attraction the Earth does over an object. It is calculated as the product of mass and gravitational acceleration, which has magnitude g = 9.8 m/s².

Suppose positive referential is going up. To determine mass:

F_{r}=m.a

F_{t}-F_{g}=m.a

F_{t}-m.g=m.a

18.8-9.8m=5.22m

15.02m=18.8

m = 1.25

Block m has 1.25 kg.

(d) Gravitational force is also called weight. So, as described above: F_{g}=m.g.

The weight for the hanging block is

F_{g}=1.25*9.8

F_{g}= 12.25 N

Comparing tension and weight:

\frac{12.25}{18.8} ≈ 0.65

We can see that, weight of the hanging block is almost 0.65 times smaller than the tension on the rope.

You might be interested in
What is the gravitational potential energy of a 3 kg ball kicked into the air at a height of 5 meters?
sladkih [1.3K]

formula for gravitational P.E =mgh

Solution:-mass=3kg height=5metre and gravity=9.8 or 10m/sec² so P.E=mgh , 3×9.8×5=147kgm²/sec²

7 0
3 years ago
Six new refrigerator prototypes are tested in the laboratory. For each refrigerator, the electrical power P needed for it to ope
Mandarinka [93]

Answer:

performance coefficient from largest to the smallest

P= 500 W, Qc,max/deltaT= 2000 J/s

P= 250 W, Qc,max/deltaT= 1000 J/s

P= 750 W, Qc,max/deltaT= 1500 J/s

) P= 400 W, Qc,max/deltaT= 1200 J/s

P= 500 W, Qc,max/deltaT= 1500 J/s

P= 1000 W, Qc,max/deltaT= 3000 J/s.

the rate at which they raise the temperature of the room.

2.1.P= 1000 W, Qc,max/deltaT= 3000 J/s

P= 500 W, Qc,max/deltaT= 2000 J/s

P= 750 W, Qc,max/deltaT= 1500 J/s

P= 500 W, Qc,max/deltaT= 1500 J/s

P= 400 W, Qc,max/deltaT= 1200 J/s

P= 250 W, Qc,max/deltaT= 1000 J/s

Explanation:

A refrigerator is a device that uses work to remove heat energy from a cold reservoir and deposit it into a hot reservoir. .A good refrigerator (with a large performance coefficient) will remove a large amount of heat energy from the cold reservoir for a small amount of work input

The performance coefficient  of a refrigerator is defined as the ratio of the heat energy removed from the cold reservoir  to the work  input to the refrigerator:

k=QC/W

power is defined as work per unit time

1.k=1500/750=2

2. 1200/400=3

3.2000/500=4

4.1000/250=4

5.1500/500=3

6.3000/1000=3

performance coefficient from largest to the smallest

P= 500 W, Qc,max/deltaT= 2000 J/s

P= 250 W, Qc,max/deltaT= 1000 J/s

P= 750 W, Qc,max/deltaT= 1500 J/s

) P= 400 W, Qc,max/deltaT= 1200 J/s

P= 500 W, Qc,max/deltaT= 1500 J/s

P= 1000 W, Qc,max/deltaT= 3000 J/s

2, Rate at which they raise the temperature of the room.

rate at which temperature rises in the inner chamber of the refrigerator is proportional to the rate of energy used to dispel heat from the refrigerator

1.P= 1000 W, Qc,max/deltaT= 3000 J/s

P= 500 W, Qc,max/deltaT= 2000 J/s

P= 750 W, Qc,max/deltaT= 1500 J/s

P= 500 W, Qc,max/deltaT= 1500 J/s

P= 400 W, Qc,max/deltaT= 1200 J/s

P= 250 W, Qc,max/deltaT= 1000 J/s

5 0
3 years ago
All organisms have adaptations. The list below describes how different adaptations might affect different species.
VMariaS [17]
I think A, because rodents already live in winter months when little food is available, but I'm not sure.
3 0
4 years ago
Read 2 more answers
n electromagnetic wave in vacuum has an electric field amplitude of 611 V/m. Calculate the amplitude of the corresponding magnet
enot [183]

Answer:

The  corresponding  magnetic field is  

Explanation:

From the question we are told that

    The electric field amplitude is  E_o   =  611\  V/m

   

Generally the  magnetic  field amplitude is  mathematically represented as

              B_o  =  \frac{E_o }{c }

Where c is the speed of light with a constant value

         c = 3.0 *0^{8} \ m/s

So  

        B_o   =  \frac{611 }{3.0*10^{8}}

         B_o   =  2.0 4 *10^{-6} \  Vm^{-2} s

Since 1  T  is  equivalent to  V  m^{-2} \cdot  s

         B_o  =  2.0 4 *10^{-6} \ T

6 0
4 years ago
A kettle of water contains 1.2 kg of water. Calculate how much energy is required to hear it from water at 10 degrees to its boi
Darya [45]

Answer:

450 kJ

Explanation:

Q = mCΔT

where Q is heat (energy),

m is mass,

C is specific heat capacity,

and ΔT is the temperature change.

Q = (1.2 kg) (4180 J/kg/°C) (100°C − 10°C)

Q = 451,440 J

Q ≈ 450 kJ

6 0
3 years ago
Other questions:
  • What happens when an electron moves from an excited state to the ground state?
    12·1 answer
  • What is the average velocity of the object between 14 and 22 seconds
    12·2 answers
  • Estimate the number of dollar bills (15.5 cm wide), placed end to end, that it would take to circle the Earth (radius = 6.40 × 1
    7·1 answer
  • It's nighttime, and you've dropped your goggles into a 3.2-m-deep swimming pool. If you hold a laser pointer 1.2 m above the edg
    9·1 answer
  • Imagine a spring made of a material that is not very elastic, so that the spring force does not satisfy Hooke’s Law, but instead
    6·1 answer
  • If the bat emits a sound at a frequency of 80.2 kHzkHz and hears it reflected at a frequency of 83.5 kHzkHz while traveling at a
    14·1 answer
  • a 50kg person is standing still in ice skates throws their 2.0kg helmet to the right at 25m/s while on a friction less surface.
    7·1 answer
  • The smallest unit of charge is − 1.6 × 10 − 19 C, which is the charge in coulombs of a single electron. Robert Millikan was able
    15·1 answer
  • CHALLENGE
    8·2 answers
  • which of the following astronomers introduced the most widely accepted hypothesis regarding the origin of the solar system?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!