I'm assuming a 5-card hand being dealt from a standard 52-card deck, and that there are no wild cards.
A full house is made up of a 3-of-a-kind and a 2-pair, both of different values since a 5-of-a-kind is impossible without wild cards.
Suppose we fix both card values, say aces and 2s. We get a full house if we are dealt 2 aces and 3 2s, or 3 aces and 2 2s.
The number of ways of drawing 2 aces and 3 2s is
and the number of ways of drawing 3 aces and 2 2s is the same,
so that for any two card values involved, there are 2*24 = 48 ways of getting a full house.
Now, count how many ways there are of doing this for any two choices of card value. Of 13 possible values, we are picking 2, so the total number of ways of getting a full house for any 2 values is
The total number of hands that can be drawn is
Then the probability of getting a full house is
Answer:
Step-by-step explanation:
$12(20b/$48)=5b
Answer:
96
Step-by-step explanation:
Divide 64 by 2
add 32+ 64
x=96
Parallel should be your answer!
Non-linear
The line should be an exponential function, as it halves in mass every time a certain amount of time has passed.