The correct answer for this question is this one: "D. Hydrosphere"
There exists the same question with the choices and an attached imaged.These are the following choices:
<span>A. Biosphere
B. Cryosphere
C. Geosphere
D. Hydrosphere</span>
Hope this helps answer your question and have a nice day ahead.
Answer: The bonds are intermediate between double and single bonds
Explanation:
A closer look at the diagram below shows that the bonds in sulphur IV oxide are intermediate between double and single bonds. Hence they do not have the exact bond angle of single bonds. This is why the bond angle is not exactly 120°. There are two resonance structures in the diagram that clearly show this point.
Answer: 2800 g
Explanation:

According to avogadro's law, 1 mole of every substance weighs equal to molecular mass and contains avogadro's number
of particles.
Given mass = 5 kg = 5000 g
1 mole of
produces = 1 mole of 
50 moles of
produces =
of 
Mass of 
2800 g of
is produced from 5.0 kg of limestone.
Answer:
ZnS(s) ⇄ S²⁻(aq) + Zn²⁺(aq)
Explanation:
First, we will write the molecular equation, since it is easier to balance.
2 HBr(aq) + ZnS(s) ⇄ H₂S(aq) + ZnBr₂(aq)
In the full ionic equation we include all ions and molecular species.
2 H⁺(aq) + 2 Br⁻(aq) + ZnS(s) ⇄ 2 H⁺(aq) + S²⁻(aq) + Zn²⁺(aq) + 2 Br⁻(aq)
In the net ionic equation we include only the ions that participate in the reaction and the molecular species.
ZnS(s) ⇄ S²⁻(aq) + Zn²⁺(aq)
Answer:
Canonical structures of a chemical specie explain its observed properties from a valence bond theory perspective.
Explanation:
Resonance is a valence bond concept introduced by Linus Pauling to explain the observed properties of certain chemical species such as bond lengths, bond angles, bond order , etc.
There are certain chemical species for which a single chemical structure does not suffice in explaining its observed properties. For instance, the bond order in CO3^2- is about 1.33. Its bond length, shows that the C-O bond present in CO3^2- is neither a pure C-O single bond nor a pure C-O double bond. Hence the structure of CO3^2- is 'somewhere in between' three contributing canonical structures as shown in the image attached to this answer. The resonance structures of NO3^- are also shown.