The chemical equation is said to be balanced if the number of atoms in the reactants and products is the same
<h3>Further explanation</h3>
Equation balanced ⇒ total number of atoms in reactants(on the left)= total number of atoms in products(on the right)
H₂+O₂---> H₂O
Reactants : H₂, O₂
Products : H₂O
not balanced
H₂O₂ ---> H₂O+O₂
Reactants : H₂O₂
Products : H₂O, O₂
not balanced
Na+O₂ ---> Na₂O
Reactants : Na, O₂
Products : Na₂O
not balanced
N₂+H₂ ---> NH₃
Reactants : N₂, H₂
Products : NH₃
not balanced
P₄+O₂---> P₄O₁₀
Reactants : P₄, O₂
Products : P₄O₁₀
not balanced
Fe+H₂O ----> Fe₃O₄ + H₂
Reactants : Fe, H₂O
Products : Fe₃O₄
not balanced
<span>C. polar bonds and asymmetrical structure
If the molecule contains polar bonds but it has a symmetrical structure, the polar bonds will cancel each other out so the overall molecule will be non-polar.
On the other hand, if the molecule contains polar bonds but has an asymmetrical structure, then the polar bonds won't cancel each other out, so the overall molecule ends up being polar.
</span>
The correct answer is B. The shape of a molecule where three pairs of electrons are shared is a trigonal planar. This is characterized by one central atom and three atoms forming an equilateral triangle which is bonded to the central atom.
Eukaryotic cells, the theoretical maximum yield of ATP generated per glucose is 36 to 38, depending on how the 2 NADH generated in the cytoplasm during glycolysis enter the mitochondria and whether the resulting yield is 2 or 3 ATP per NADH