Mass will remain constant on both planet, let mass of the object be "m".
let x be the <span>acceleration due to gravity on the surface of mars.
Weight of object on earth = m *g , where g is </span><span>acceleration due to gravity on the surface of earth
</span>⇒350 = m * 9.8
⇒m = 350 / 9.8 .............................equation(1)
Weight of object on mars = m * x , where x is acceleration due to gravity on the surface of mars
134 = m * x .............................equation(2)
putting the value of m from equation (1) in equation(2) , we get,
x = (134 * 9.8) / 350
⇒ x = 3.572 m/s²
Recall that

where
and
are the lion's initial and final vertical velocities,
is its acceleration, and
is the vertical displacement.
At its maximum height, the lion has 0 vertical velocity, so we have

where <em>g</em> is the acceleration due to gravity, 9.80 m/s², and we take the starting position of the lion on the ground to be the origin so that
.
Let <em>v</em> denote the initial speed of the jump. Then

The second one is correct not sure about the first one sorry
Answer:
(a) -472.305 J
(b) 1 m
Explanation:
(a)
Change in mechanical energy equals change in kinetic energy
Kinetic energy is given by
Initial kinetic energy is 
Since he finally comes to rest, final kinetic energy is zero because the final velocity is zero
Change in kinetic energy is given by final kinetic energy- initial kinetic energy hence
0-472.305 J=-472.305 J
(b)
From fundamental kinematic equation

Where v and u are final and initial velocities respectively, a is acceleration, s is distance
Making s the subject we obtain
but a=\mu g hence

Answer:
the correct answer is C v = 60 cm / s
Explanation:
The speed of a wave is related to the frequency and the wavelength
v = λ f
They indicate that the object performs 20 oscillations every second, this is the frequency
f = 20 Hz
the wavelength is the distance until the wave repeats, the distance between two consecutive peaks corresponds to the wavelength
λ = 3 cm = 0.03 m
let's calculate
v = 20 0.03
v = 0.6 m / s
v = 60 cm / s
the correct answer is C