Answer:

Explanation:
Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.
.
Now, let's use the ideal gas equation to the initial and the final state:

Let's recall that the term nR is a constant. That is why we can match these equations.
We can find a relation between the volumes of the initial and the final state.

Combining this equation with the first equation we have:


Now, we just need to solve this equation for T₂.

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.
Here,
Finally, T2 will be:

Answer:
The answer is zero please Give me Brainly
Explanation:
Answer:
When object is placed between the focus (F) and pole (P) of a concave mirror, magnified and erect image of the object is formed on the back of the mirror.
When object is placed between the centre of curvature and the principal focus of a concave mirror, magnified and inverted image is formed in front of the mirror.
Explanation:
Answer:
To determine the mystery component we will connect the mystery component to a DC voltage source, then I will measure the resistance of the component with the use of Ohmmeter, the value of the resistance of the mystery component will determine what the mystery component is
if the resistance > 1( very high ) then component is a capacitor
if the resistance = 0 then component is an inductor
Explanation:
To determine the mystery component we will connect the mystery component to a DC voltage source, then I will measure the resistance of the component with the use of Ohmmeter, the value of the resistance of the mystery component will determine what the mystery component is
if the resistance > 1( very high ) then component is a capacitor
if the resistance = 0 then component is an inductor