That depends on the weight, shape, size, density, and moisture content
of the cotton ball, as well as on the length, shape, thickness, and surface
texture of every little cotton fiber sticking out of it.
Now you know why we typically ignore air resistance when we work with
objects falling in gravity.
What are the following statements? If there's one that mention a description of current action, or motion, that's your answer.
Answer:
Weight on Venus = 443.75 N
Explanation:
Weight of a body is the product of mass and acceleration due to gravity.
So we have
Weight = Mass x Acceleration due to gravity
W = mg
Mass, m = 50 kg
Acceleration due to gravity, g = 8.875 m/s²
W = 50 x 8.875 = 443.75 N
Weight on Venus = 443.75 N
Answer: 2120 N is correct
Explanation: correct answer for acellus
Answer:
A+B; 5√5 units, 341.57°
A-B; 5√5 units, 198.43°
B-A; 5√5 units, 18.43°
Explanation:
Given A = 5 units
By vector notation and the axis of A, it is represented as -5j
B = 3 × 5 = 15 units
Using the vector notations and the axis, B is +15i. The following vectors ate taking as the coordinates of A and B
(a) A + B = -5j + 15i
A+B = 15i -5j
|A+B| = √(15)²+(5)²
= 5√5 units
∆ = arctan(5/15) = 18.43°
The angle ∆ is generally used in the diagrams
∆= 18.43°
The direction of A+B is 341.57° based in the condition given (see attachment for diagrams
(b) A - B = -5j -15i
A-B = -15i -5j
|A-B|= √(15)²+(-5)²
|A-B| = √125
|A-B| = 5√5 units
The direction is 180+18.43°= 198.43°
See attachment for diagrams
(c) B-A = 15i -( -5j) = 15i + 5j
|B-A| = 5√5 units
The direction is 18.43°
See attachment for diagram