Answer:
The force applied to the surface is 9 kilo Newton.
Explanation:
While jumping on the surface the player applies the force that is equal to its weight on the surface.
The mass of the player is given as 90 kg.
Force applied by the player = weight of the player
Force applied by the player = m × g
Where m is the mass of the player and g is acceleration due to gravity
Force applied by the player = 90 × 9.8
Force applied by the player = 882 Newton
Expressing your answer to one significant figure, we get
Force applied by the player =0. 9 kilo Newton
The force applied to the surface is 0.9 kilo Newton.
Answer:
The percentage of an iceberg submerged beneath the surface of the ocean = 89.67%
Explanation:
Let V be the total volume of the iceberg
Let x be the volume of iceberg submerged
According to Archimedes principle,
weight of the iceberg = weight of the water displaced (that is, weight of x volume of water)
Weight of the iceberg = mg= ρ(iceberg) × V × g
Weight of water displaced = ρ(fluid) × x × g
We then have
ρ(iceberg) × V × g = ρ(fluid) × x × g
(x/V) = ρ(iceberg) ÷ ρ(fluid) = 916.3 ÷ 1021.9 = 0.8967 = 89.67%
Hope this Helps!!!!
Answer:
What is the acceleration of an object moving at a constant speed?
The Meaning of Constant Acceleration
The data table above show an object changing its velocity by 10 m/s in each consecutive second. This is referred to as a constant acceleration since the velocity is changing by a constant amount each second.
The complete sentence is:
A calorimeter directly measures changes in temperature in order to calculate specific heat.
In fact, the amount of energy acquired/released by a substance is directly proportional to its change in temperature due to the equation

where Q is the amount of energy, m is the mass of the substance, Cs is the specific heat of the substance and
is the change in temperature. Therefore, by knowing Q, m and by measuring the change in temperature, it is possible to calculate Cs, the specific heat capacity of the substance.
Answer:1). Distance of far point x=0.9m
Therefore, since the image is virtual
-f=-x = -0.9m
Power of the concave lenses = 1/f = 1/-0.9
= -1.11D
2 ) near point is 21cm = 0.21m
Power = 4-1/near point
= 4/0.21
= 14.2D.