<span>Here I think you have to find the velocity in x and y components where x is east and y is north
So as air speed indicator shows the negative speed in y component and adding it in
air speed while multiplying with the direction component we will get the velocity as velocity is a vector quantity so direction is also required
v=-28 m/s y + 18 m/s (- x/sqrt(2) - y/sqrt(2))
solving
v= -12.7 m/s x-40.7 m/s y
if magnitude of velocity or speed is required then
speed= sqrt(12.7^2 + 40.7^2)
speed= 42.63 m/s
if angle is asked
angle = arctan (40.7/12.7)
angle = 72.67 degrees south of west</span>
<span>Distance in Miles (.25) x 3600 (seconds in an hour) / time in seconds = 200 MPH. Drag racing calculates the top speed via a speed trap starting 66 feet from the finish line.</span>
sorry if i'm mistaken but i'm pretty sure its A) Y
uhhhh idk cheif...
thats a big oof right there.
ged is always an option
Answer: A cold front occurs when a cold air mass advances into a region occupied by a warm air mass. If the boundary between the cold and warm air masses doesn't move, it is called a stationary front.
Explanation: Two types of occluded front exist: the warm-type and the cold-type. They’re distinguished by the relative temperatures of the air mass ahead of the occlusion – in other words, the air mass ahead of the original warm front – and the air mass behind the cold front. If the air behind the cold front is colder than the air ahead of the occlusion, it shoves beneath that air (because it’s denser) to form a cold-type occluded front. If the air behind the cold front is warmer than the air ahead, it rides over it to form a warm-type occluded front – which appears to be the more common case. In either situation, the lighter warm air representing the air mass originally between the warm and cold fronts sits above the boundary between the two cooler air masses.
Hope this helps!!