1 mol = 6.022 x 10²³ atoms
In order to find how many atoms, dimly multiply the amount of moles you have by 6.022 x 10²³ or Avogadro's number.
So you have 1.75 mol CHC1₃ x (6.022x10²³) = 1.05385 x 10²⁴ atoms of CHCl₃
But now you have to round because of the rules of significant figures so you get 1.05 x 10²⁴ atoms of CHCl₃
Answer:
i think the answer is yess
Hypoventilation can cause oxygen levels to fall too low, a condition called Hypoxia and carbon dioxide levels may rise too high, a condition called Hypercapnia.
Hypoxia is a state in which there is insufficient oxygen reaching the tissues of the body or a specific area of the body.
Generalized hypoxia, which affects the entire body, and local hypoxia, which affects a specific area of the body, are the two types of hypoxia.
Although fluctuations in arterial oxygen concentrations are frequently associated with clinical conditions, they can also occur naturally during severe physical activity or hypoventilation training.
A rise in carbon dioxide partial pressure (PaCO2) above 45 mmHg is referred to as hypercapnia.
The body produces carbon dioxide as a metabolic byproduct of its numerous cellular functions, and it has a number of physiological systems at its disposal to control its levels.
Learn more about Hypoxia here brainly.com/question/13870938
#SPJ4
Answer: XF8
Explanation:
Empirical Formular shows the simplest ratio of elements in a compound.
Xe = 46.3% F = 53.7%
Divide the percentage composition of each element by the atomic mass.
Xe = 46.3/ 131.3 F= 53.7/ 19
= 0.353( approx) = 2.826 (approx)
Divide through with the smallest of the answers gotten in previous step.
Xe = 0.353 / 0.353 F = 2.826/ 0.353
= 1 = 8.0
Empirical formular = XF8
Answer:
3 is the coefficient of oxygen.
Explanation:
Chemical equation:
CH₃OH + O₂ → CO₂ + H₂O
Balanced chemical equation:
2CH₃OH + 3O₂ → 2CO₂ + 4H₂O
The given reaction is combustion reaction. In this reaction methanol is burn in the presence of oxygen and produces carbon dioxide and water.
The balance equation show reaction also follow the law of conservation of mass.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.