Answer:
Ionic bonds hold charged particles in solid NaCl together, such that they are unable to move or conduct electricity.
Explanation:
Consider an electric current that flows through a conductor: charge moves in a uniform direction from one end of the conductor towards the other.
Thus, there are two conditions for a substance to conduct electricity:
- The substance shall contain charged particles, and
- These charged particles shall be free to move across the substance.
A conductor of electricity shall meet both requirements.
Now, consider the structure of solid NaCl
. NaCl is an ionic compound. It contains an ocean of oppositely charged ions:
- Positive
ions, and - Negative
ions.
Ions carry charge. Thus, solid NaCl contains charged particles and satisfies the first condition.
Inside solid NaCl
, electrostatic attractions ("ionic bonds") between the oppositely charged ions hold these ions in rigid ionic lattices. These ions are unable to move relative to each other. As a result, they cannot flow through the solid to conduct electricity. Under solid state, NaCl is unable to satisfy the second condition.
As a side note, melting NaCl into a liquid breaks the ionic bonds and free the ions from the lattice. Liquid NaCl is a conductor of electricity.
Answer:
b) Gain or lose electrons
Explanation:
An ion is an electrically charged particle. For an atom to be charged, it must have gained or lost electron in the process and therefore, it becomes an ion.
The loss or gain of electrons is what makes an atom charged and eventually becomes an ion.
A positively charged ion is one that has lost an electron and it is called a cation. In such an ion, the number of electrons are lesser than those of protons. This is why they are cations
A negatively charged ion is one that has gained electrons. They are called anions. In such an ion, the number of electrons are greater than that of protons.
H₂CO₃ ⇔ HCO₃⁻ + H⁺
I 0.160 0 0
C -x +x +x
E 0.160-x +x +x
Ka1 = [HCO₃⁻][H⁺] / [H₂CO₃]
4.3 x 10⁻⁷ = x² / (0.160-x) (x is neglected in 0.160-x = 0.160)
x² = 6.88 x 10⁻⁸
x = 2.62 x 10⁻⁴
HCO₃⁻ ⇔ CO₃⁻² + H⁺
I 2.62 x 10⁻⁴ 0 2.62 x 10⁻⁴
C -x +x +x
E 2.62 x 10⁻⁴ - x +x 2.62 x 10⁻⁴ + x
Ka2 = [CO₃⁻²][H⁺] / [HCO₃⁻]
5.6 x 10⁻¹¹ = x(2.62 x 10⁻⁴ + x) / (2.62 x 10⁻⁴ - x)
x = 5.6 x 10⁻¹¹
Thus,
[H₂CO₃] = 0.160 - (2.62 x 10⁻⁴) = 0.16 M
[HCO₃⁻] = 2.62 x 10⁻⁴ - ( 5.6 x 10⁻¹¹) = 2.6 x 10⁻⁴ M
[CO₃⁻²] = 5.6 x 10⁻¹¹ M
[H₃O⁺] = 2.62 x 10⁻⁴ + 5.6 x 10⁻¹¹ = 2.6 x 10⁻⁴ M
[OH⁻] = 3.8 x 10⁻¹¹
The red is an oxygen molecule. 1 oxygen and 2 hydrogen =h2o or water!
Answer:
C. Precipitation of white bismuth hydroxide.
Explanation:
When aqueous ammonia is added to a solution that has Bi3+ and CU2+ cations, what we would have as a chemical result is the precipitation of white Bismuth hydroxide.
The chemical reaction for this can be written as,
Bi3+ + 2NH3 + 3H2O ⇌ Bi(OH)3(s) + 3NH4
Thank you!