Answer: 1) "cohension" ;
2) "liquid" .
____________________________________________________________
Answer:
Yes
Explanation:
They are a unique type of eukaryote because they lack an important organelle: mitochondria. Mitochondria are essential for producing cellular energy in most eukaryotic cells. However, due to its habitat, it is able to acquire energy from a process called sulfur mobilization.
They are significant because they challenge the idea that eukaryotes need mitochondria to be classified as eukaryotic. However, they have other membrane-bound organelles such as a nucleus and Golgi apparatus, meaning they remain eukaryotic.
Research suggest they lost their mitochondria over time, rather than never having had them throughout their ancestry.
Because of all these reasons, they still meet the definition of a eukaryote.
Answer:
Explanation:
<u>1) First law of thermodynamic (energy balance)</u>
- Heat released by the the hot water (345K ) = Heat absorbedby the cold water (298 K) + Heat absorbed by the calorimeter
<u>2) Energy change of each substance:</u>
Heat released or absorbed = mass × Specific heat × change in temperature
- density of water: you may take 0.997 g/ ml as an average density for the water.
- mass of water: mass = density × volume = 50.0 ml × 0.997 g/ml = 49.9 g
- Specif heat of water: 1 cal / g°C
- Heat released by the hot water:
Heat₁ = 49.9 g × 1 cal / g°C × (345 K - 317 K) = 49.9 g × 1 cal / g°C × (28K)
- Heat absorbed by the cold water:
Heat₂ = 49.9 g × 1 cal / g°C × (317 K - 298 K) = 49.9 g × 1 cal / g°C × (19K)
- Heat absorbed by the calorimeter
Heat₃ = Ccal × (317 K - 298 K) = Ccal × (19K)
<u>4) Balance</u>
49.9 g × 1 cal / g°C × (28 K) = 49.9 g × 1 cal / g°C × (19 K) + Ccal × (19 K)
Ccal = [49.9 g × 1 cal / g°C × (28 K) - 49.9 g × 1 cal / g°C × (19 K) ] / 19K
Ccal = 23.6 cal/ K
- Convert to cal / K to Joule / K
23.6 cal / K × 4.18 J / cal = 98.6 J/K
Which rounded to 2 signficant figures leads to 99 J/k, which is the first choice.