Answer:
M
Explanation:
Henry's law relational the partial pressure and the concentration of a gas, which is its solubility. So, at the sea level, the total pressure of the air is 1 atm, and the partial pressure of O2 is 0.21 atm. So 21% of the air is O2.
Partial pressure = Henry's constant x molar concentration
0.21 = Hx1.38x
H = 
H = 152.17 atm/M
For a pressure of 665 torr, knowing that 1 atm = 760 torr, so 665 tor = 0.875 atm, the ar concentration is the same, so 21% is O2, and the partial pressure of O2 must be:
P = 0.21*0.875 = 0.1837 atm
Then, the molar concentration [O2], will be:
P = Hx[O2]
0.1837 = 152.17x[O2]
[O2] = 0.1837/15.17
[O2] =
M
Feo + 2H = H2O + Fe + 2 + CIO4-
this is ur answer. .
mrk me as brainlist
Answer:
first we add the same direction. 12N + 32 N=44N .
then we add the forces. 54 up + 44N down= 10N up
Answer:
Q = 2640.96 J
Explanation:
Given data:
Mass of He gas = 10.7 g
Initial temperature = 22.1°C
Final temperature = 39.4°C
Heat absorbed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree. Specific heat capacity of He is 14.267 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 39.4°C - 22.1°C
ΔT = 17.3°C
Q = 10.7 g× 14.267 J/g.°C × 17.3°C
Q = 2640.96 J