1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vera_Pavlovna [14]
3 years ago
8

What is the shaded area?

Mathematics
1 answer:
spin [16.1K]3 years ago
3 0

Answer:

The total area (including the area of the circle) would be 16 × 16 = 256 square centimetres.

The area of the circle would be (taking the value of pi as 3.14) is 200.96 square centimetres

The area of the shaded region would be 256 - 200. 96 = 55.04 square centimetres

You might be interested in
Identify the usual level of measurement for each of the following A. year in school B. IQ scores C. life expectancy D. fatigue E
Mashutka [201]

Answer:

The answer is C

Step-by-step explanation:

4 0
2 years ago
Search cos jk and tan jk knowing that sin jk = 8/3
aleksley [76]

Answer:

cosjk = √55 i/3

tanjk = 8/√55 i

Step-by-step explanation:

Given

sin jk = 8/3

According to SOH CAH TOA

Sin theta = opposite/hypotenuse = 8/3

Opposite = 8

hypotenuse = 3

Get the adjacent using the pythagoras theorem

hyp² = opp²+adj²

adj² = hyp² - opp²

adj² = 3² - 8²

adj² = 9-64

adj² = -55

adj = √-55

adj = √55 i (i = √-1)

Get cosjk

cosjk = adj/hyp

cosjk = √55 i/3

Get tanjk

tanjk = opp/adj

tanjk = 8/√55 i

3 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Find the volume, in cubic centimeters, of the rectangular prism pictured below.
never [62]

Answer:

V= 18.75 cm^3

Step-by-step explanation:

  • The formula for finding the volume for <em>any</em> given shape is V = L x W x H.
  • So, multiply 2 1/2 cm x 2 1/2 cm x 3 cm.
  • This gives you 18.75 cm^3
6 0
3 years ago
Which of the I-values are solutions to both of the following inequalities?
lidiya [134]

Answer:

Option (C)

Step-by-step explanation:

Given inequalities are,

81 > x and x > 68

Therefore, 81 > x > 68 is the inequality representing the solution area for x.

Out of x = 88, 85 and 80,

x = 80 will lie between the range of x = 68 and x = 81.

Therefore, Option (C) will be the correct option.

5 0
2 years ago
Other questions:
  • Wilma saves $12,000 at the end of every six months for 10 years. Assume 10% compounded semiannually and find the present value.
    8·1 answer
  • N+(-n) = 3+ 15<br><br> Solve
    10·1 answer
  • Solve by elimination 5x-14y=22 -6x+7y=3
    7·1 answer
  • Help please ASAP I need the anwser or I will fail :( please hurry
    8·1 answer
  • Find the domain of fg f(x)=x+2 g(x)=1/x+2
    5·1 answer
  • What is 3 over 7 divided by 4 over 5?<br><br> PLEASEEE HELP MEEEE!!
    9·2 answers
  • Please help. im sick and dont know how to do this
    13·1 answer
  • Help me please i need this answered fast
    8·1 answer
  • What are the values of a and b?
    5·1 answer
  • Do exponential functions have horizontal asymptotes?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!