If you’re looking for profit is would be $59.00
1st : Find the volume of the rectangular block:
12 × 10 × 20 = 2400 cm^3.
2nd : Find the volume of a cylinder
![\pi {r}^{2} h](https://tex.z-dn.net/?f=%5Cpi%20%20%7Br%7D%5E%7B2%7D%20h)
Where r is radius & h is height.
so:
![\pi \times 2.2 {}^{2} \times 5.0](https://tex.z-dn.net/?f=%5Cpi%20%5Ctimes%202.2%20%7B%7D%5E%7B2%7D%20%20%5Ctimes%205.0)
= 76.02654222 cm^3
Lastly, divide the volume of the rectangular block by the volume of the cylinder
2400 ÷ 76.026 = 31.5679226
You can't round it up so the answer is F) 31
Answer:
A. Length of a bead necklace compared with the number of identical beads
Step-by-step explanation:
Using identical beads in a necklace means that the length of the necklace will depend on the total number of identical beads in the necklace.
For each bead added, the length of the necklace will increase a given, constant, amount. This is a constant rate of change.
You need to multiply 188 by 25%. But first convert 25% to a decimal 0.25.
188*0.25 is 47
Now we subtract 188 - 47
Which is 141
$141 is the sales price.
The only way to solve if it is equal to something
assuming that the teacher wanted you to make it equal to zero do
0=-3x^2-21x-54
remember if we can do
xy=0 then assume x and y=0
so factor
0=-3x^2-21x-54
undistribute the -3
0=-3(x^2+7x+18)
remember 0 times anything=0 so
x^2+7x+18 must equal zero
use quadratice formula which is
if you have
ax^2+bx+c=0 then
x=
![\frac{-b+/- \sqrt{b^{2}-4ac} }{2a}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-b%2B%2F-%20%5Csqrt%7Bb%5E%7B2%7D-4ac%7D%20%7D%7B2a%7D%20)
x^2+7x+18
a=1
b=7
c=18
x=
![\frac{-7+/- \sqrt{7^{2}-4(1)(18)} }{2(1)}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-7%2B%2F-%20%5Csqrt%7B7%5E%7B2%7D-4%281%29%2818%29%7D%20%7D%7B2%281%29%7D%20)
x=
![\frac{-7+/- \sqrt{49-72} }{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-7%2B%2F-%20%5Csqrt%7B49-72%7D%20%7D%7B2%7D%20)
x=
![\frac{-7+/- \sqrt{-23} }{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-7%2B%2F-%20%5Csqrt%7B-23%7D%20%7D%7B2%7D%20)
i=√-1
x=
![\frac{-7+/- i\sqrt{23} }{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-7%2B%2F-%20i%5Csqrt%7B23%7D%20%7D%7B2%7D%20)
the zerose would be
x=
![\frac{-7+ i\sqrt{23} }{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-7%2B%20i%5Csqrt%7B23%7D%20%7D%7B2%7D%20)
or