Answer: 2NOBr(g) ⇌ 2NO(g) + Br2(g)
Explanation: For volume changes in equillibrium, the following are to be taken into consideration:
- Volume changes have no effect on equillibrium system that contains solid or aqueous solutions.
- An increase in volume of an equilibrium system will shift to favor the direction that produces more moles of gas.
- A decrease in volume of an equilibrium system will shift to favor the direction that produces less moles of gas.
- Volume changes will have no effect on the equillibrium system if there is an equal number of moles on both sides of the reaction.
2NOBr(g) ⇌ 2NO(g) + Br2(g) is the equillibrium system because there are more moles of products,therefore an increase in the volume of the reaction will shift to the right and produce more moles of products. Also both reactants and products exist in the gaseous state and does not have equal number of moles.
Molarity is defined as the number of moles of solute in 1 L of solution
the mass of Ca(NO₃)₂ present - 8.50 g
therefore number of moles of Ca(NO₃)₂ - 8.50 g / 164 g/mol = 0.0518 mol
the volume of solution prepared is 755 mL
therefore if there are 0.0518 mol in 755 mL
then in 1000 mL the number of moles - 0.0518 mol / 0.755 L
molarity is therefore - 0.0686 M
Answer:
Is this math? Cause as a fourth grader, I can do Algebra, but not this.
Explanation:
One molecule of ammonia is composed of two atoms of nitrogen and three atoms of hydrogen. Option B.
<h3>What is an equation?</h3>
The term chemical equation has to do with the presentation of a chemical reaction on paper in a way that it can be easily understood. It is easy to write an equation to show what is going on in a reaction system.
Now we have the reactions as shown in the question. In this reaction which is the synthesis of ammonia and occurs industrially in the Haber process. The statement that is not true is that; one molecule of ammonia is composed of two atoms of nitrogen and three atoms of hydrogen. Option B.
Learn more about chemical equation:brainly.com/question/28294176
#SPJ1