increases my factor of 10
Answer:
Part A = The mass of sulfur is 6.228 grams
Part B = The mass of 1 silver atom is 1.79 * 10^-22 grams
Explanation:
Part A
Step 1: Data given
A mixture of carbon and sulfur has a mass of 9.0 g
Mass of the product = 27.1 grams
X = mass carbon
Y = mass sulfur
x + y = 9.0 grams
x = 9.0 - y
x(molar mass CO2/atomic mass C) + y(molar mass SO2/atomic mass S) = 22.6
(9 - y)*(44.01/12.01) + y(64.07/32.07)
(9-y)(3.664) + y(1.998)
32.976 - 3.664y + 1.998y = 22.6
-1.666y = -10.376
y = 6.228 = mass sulfur
x = 9.0 - 6.228 = 2.772 grams = mass C
The mass of sulfur is 6.228 grams
Part B
Calculate the mass, in grams, of a single silver atom (mAg = 107.87 amu ).
Calculate moles of 1 silver atom
Moles = 1/ 6.022*10^23
Moles = 1.66*10^-24 moles
Mass = moles * molar mass
Mass = 1.66*10 ^-24 moles *107.87
Mass = 1.79 * 10^-22 grams
The mass of 1 silver atom is 1.79 * 10^-22 grams
Explanation:
acid should be handled with caution because it is dangerous as it may burn the skin
Answer:
Molecular weight of the compound = 372.13 g/mol
Explanation:
Depression in freezing point is related with molality of the solution as:

Where,
= Depression in freezing point
= Molal depression constant
m = Molality


m = 0.26
Molality = 
Mass of solvent (toluene) = 15.0 g = 0.015 kg

Moles of compound = 0.015 × 0.26 = 0.00389 mol

Mass of the compound = 1.450 g

Molecular weight = 
Answer:
b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature.
Explanation:
The solubility of NaCH₃CO₂ in water is ~1.23 g/mL. This means that at room temperature, we can dissolve 1.23 g of solute in 1 mL of water (solvent).
<em>What would be the best method for preparing a supersaturated NaCH₃CO₂ solution?</em>
<em>a) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at room temperature while stirring until all the solid dissolves.</em> NO. At room temperature, in 100 mL of H₂O can only be dissolved 123 g of solute. If we add 130 g of solute, 123 g will dissolve and the rest (7 g) will precipitate. The resulting solution will be saturated.
<em>b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature. </em>YES. The solubility of NaCH₃CO₂ at 80 °C is ~1.50g/mL. If we add 130 g of solute at 80 °C and let it slowly cool (and without any perturbation), the resulting solution at room temperature will be supersaturated.
<em>c) add 1.23 g of NaCH₃CO₂ to 200 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature.</em> NO. If we add 1.23 g of solute to 200 mL of water, the resulting solution will have a concentration of 1.23 g/200 mL = 0.00615 g/mL, which represents an unsaturated solution.