Mostly in my opinion I think it’s the secound one
Answer:
The Order is as follow,
C-H < S-H < H-Br < H-Cl
Explanation:
Polarity depends on the electronegativity difference between two atoms, greater the electronegativity difference, greater will be the polarity of bond and vice versa.
Electronegativity Difference between Hydrogen and other given elements are as follow,
1) C-H;
E.N of Carbon = 2.55
E.N of Hydrogen = 2.20
------------
Difference 0.35
2) S-H;
E.N of Sulfur = 2.58
E.N of Hydrogen = 2.20
------------
Difference 0.38
3) H-Br;
E.N of Bromine = 2.96
E.N of Hydrogen = 2.20
-------------
Difference 0.76
4) H-Cl;
E.N of Chlorine = 3.16
E.N of Hydrogen = 2.20
-----------
Difference 0.96
Hence it is proved that the greatest electronegativity difference is found between H and Chlorine in H-Cl, therefore it is highly polar bond and vice versa.
0.300 M IKI represents the
concentration which is in molarity of a potassium iodide solution. This means
that for every liter of solution there are 0.300 moles of potassium iodide. Knowing
that molarity is a ratio of solute to solution.
By using a conversion factor:
100 ml x (1L / 1000 mL) x (0.300
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 4.98 g
Therefore, in the first
conversion by simply converting the unit of volume to liter, Molarity is in L
where the volume is in liters. The next step is converted in moles from volume
by using molarity as a conversion factor which is similar to how density can be
used to convert between volume and mass. After converting to moles it is simply
used as molar mass of Kl which is obtained from periodic table to convert from
mole to grams.
In order to get the grams of IKI
to create a 100 mL solution of 0.600 M IKI, use the same formula as above:
100 ml x (1L / 1000 mL) x (0.600
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 9.96 g
Answer:
A
Explanation:
increase in energy - hotter and/or more reactive
decrease in energy - colder and/or less reactive
Since it is going from a liquid to solid it will have a tighter arrangement of particles.
Answer:
The mass of the products left in the test tube will be less than that of the original reactants.
Explanation
The equation for the reaction is
Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(g)
1.0 3.0 3.9 0.1
Assume you started with 1.0 g of Mg.
It will react with 3.0 g of HCl to form 3.9 g of MgCl2 and 0.1 g of H2
.
Mass of reactants = mass of products
1.0 g + 3.0 g = 3.9 g + 0.1 g
4.0 g = 4.0 g
The Law of Conservation of Mass is obeyed.
However, your test tube and its contents will weigh 0.1 g less than it did before the reaction.
Does that contradict the Law of Conservation of Mass? It does not.
One of the products was the gas, hydrogen, and it escaped from the test tube. You weren't measuring all the products, so test tube and its contents weighed less than before.