Answer:
<u>C) 4</u>
Explanation:
<u>The reaction</u> :
- C (s) + 2H₂ (g) ⇒ CH₄ (g)
12g 4g 16g
Hence, based on this we can say that : <u>2 moles of hydrogen gas are needed to produce 16g of methane.</u>
<u />
<u>For 32g of methane</u>
- Number of moles of H₂ = 32/16 × 2
- Number of moles of H₂ = <u>4</u>
What's the problem ? Hardness is not the definition of a metal.
You need to expand your thinking. EVERY element is solid, liquid, and gas, over different ranges of temperature ... including all of the metals. There are only TWO elements that are liquid AT ROOM TEMPERATURE, and mercury is one of them. But on a mild day at the south pole, mercury is solid too.
Answer:
pH = 2.46
Explanation:
Hello there!
In this case, since this neutralization reaction may be assumed to occur in a 1:1 mole ratio between the base and the strong acid, it is possible to write the following moles and volume-concentrations relationship for the equivalence point:

Whereas the moles of the salt are computed as shown below:

So we can divide those moles by the total volume (0.021L+0.0066L=0.0276L) to obtain the concentration of the final salt:
![[salt]=0.01428mol/0.0276L=0.517M](https://tex.z-dn.net/?f=%5Bsalt%5D%3D0.01428mol%2F0.0276L%3D0.517M)
Now, we need to keep in mind that this is an acidic salt since the base is weak and the acid strong, so the determinant ionization is:

Whose equilibrium expression is:
![Ka=\frac{[C_6H_5NH_2][H_3O^+]}{C_6H_5NH_3^+}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5NH_2%5D%5BH_3O%5E%2B%5D%7D%7BC_6H_5NH_3%5E%2B%7D)
Now, since the Kb of C6H5NH2 is 4.3 x 10^-10, its Ka is 2.326x10^-5 (Kw/Kb), we can also write:

Whereas x is:

Which also equals the concentration of hydrogen ions; therefore, the pH at the equivalence point is:

Regards!
Answer:
No because opinion and social values may lead to bias
Explanation:
I'm smart >:)
Answer : Electron affinity (Eea) of an atom or molecule can be defined as the amount of energy released or spent when an electron is being added to a neutral atom or molecule in the gaseous state to form a negative ion.
Chlorine is considered to be the element which has highest electron affinity in the modern periodic table.
The general formula is X +
---->
+ energy
It is found that nonmetals have more positive Eea than metals.
Electron affinity increases across the group from left to right in the modern periodic table. Elements with small nucleus have high electron affinity.