Answer:
Wegener discovered that the Appalachian Mountains of the eastern United States, for instance, were geologically related to the Caledonian Mountains of Scotland. Pangaea existed about 240 million years ago. By about 200 million years ago, this supercontinent began breaking up
Answer:
599.26 grams of potassium sulfate will be produced.
Explanation:

Moles of chromium (III) sulfate = 
According to reaction, 1 mole of chromium (III) sulfate gives 3 moles of potassium sulfate.
Then 1.1480 moles of chromium (III) sulfate will give:

Mass of 3.4440 moles of potassium sulfate:
= 3.4440 mol × 174 g/mol = 599.26 g
599.26 grams of potassium sulfate will be produced.
Idk cause I’m not completely sure I apologize
Answer:
- Mass of monobasic sodium phosphate = 1.857 g
- Mass of dibasic sodium phosphate = 1.352 g
Explanation:
<u>The equilibrium that takes place is:</u>
H₂PO₄⁻ ↔ HPO₄⁻² + H⁺ pka= 7.21 (we know this from literature)
To solve this problem we use the Henderson–Hasselbalch (<em>H-H</em>) equation:
pH = pka + ![log\frac{[A^{-} ]}{[HA]}](https://tex.z-dn.net/?f=log%5Cfrac%7B%5BA%5E%7B-%7D%20%5D%7D%7B%5BHA%5D%7D)
In this case [A⁻] is [HPO₄⁻²], [HA] is [H₂PO₄⁻], pH=7.0, and pka = 7.21
If we use put data in the <em>H-H </em>equation, and solve for [HPO₄⁻²], we're left with:
![7.0=7.21+log\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]}\\ -0.21=log\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]}\\\\10^{-0.21} =\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]}\\0.616 * [H2PO4^{-}] = [HPO4^{-2}]](https://tex.z-dn.net/?f=7.0%3D7.21%2Blog%5Cfrac%7B%5BHPO4%5E%7B-2%7D%20%5D%7D%7B%5BH2PO4%5E%7B-%7D%20%5D%7D%5C%5C%20-0.21%3Dlog%5Cfrac%7B%5BHPO4%5E%7B-2%7D%20%5D%7D%7B%5BH2PO4%5E%7B-%7D%20%5D%7D%5C%5C%5C%5C10%5E%7B-0.21%7D%20%3D%5Cfrac%7B%5BHPO4%5E%7B-2%7D%20%5D%7D%7B%5BH2PO4%5E%7B-%7D%20%5D%7D%5C%5C0.616%20%2A%20%5BH2PO4%5E%7B-%7D%5D%20%3D%20%5BHPO4%5E%7B-2%7D%5D)
From the problem, we know that [HPO₄⁻²] + [H₂PO₄⁻] = 0.1 M
We replace the value of [HPO₄⁻²] in this equation:
0.616 * [H₂PO₄⁻] + [H₂PO₄⁻] = 0.1 M
1.616 * [H₂PO₄⁻] = 0.1 M
[H₂PO₄⁻] = 0.0619 M
With the value of [H₂PO₄⁻] we can calculate [HPO₄⁻²]:
[HPO₄⁻²] + 0.0619 M = 0.1 M
[HPO₄⁻²] = 0.0381 M
With the concentrations, the volume and the molecular weights, we can calculate the masses:
- Molecular weight of monobasic sodium phosphate (NaH₂PO₄)= 120 g/mol.
- Molecular weight of dibasic sodium phosphate (Na₂HPO₄)= 142 g/mol.
- mass of NaH₂PO₄ = 0.0619 M * 0.250 L * 120 g/mol = 1.857 g
- mass of Na₂HPO₄ = 0.0381 M * 0.250 L * 142 g/mol = 1.352 g
Answer:
Cl⁻
Explanation:
Definition of atomic radii
The atomic radius is the distance between center of two bonded atoms.
Trend along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase.The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases.
Trend along group:
In group by addition of electron atomic radii increase from top to bottom due to increase in atomic number and addition of extra shell.
In this way Cl⁻ will have the largest atomic radii because one extra electron is added and its atomic number is already greater than fluorine.