Answer:
Mg^2+ and OH- are the chemical species present at the equilibrium. Mg(OH)2 will not affect the equilibrium.
Explanation:
Step 1: data given
Reactants are Solid Mg(OH)2 and H2O(l)
Kc1 = 1.8 * 10^-11
Step 2: The balanced equation
Mg(OH)2(s) ⇄ Mg2+(aq) + 2OH-(aq)
Step 3: Define the equilibrium constant Kc
Kc = [OH-]²[Mg^2+]
Pure solids and liquids do not have any effect or influence on the equilibrium in the reaction. So they are not included in the equilibrium constant expression.
This means Mg^2+ and OH- are the chemical species present at the equilibrium. Mg(OH)2 will not affect the equilibrium.
Oxidation because oxygen causes the metal to corrode
In a galvanic cell, the flow of electrons will be from the anode to cathode through the circuit .
Whether a cell is an electrolysis cell (non-spontaneous chemistry driven by forcing electricity from an external energy source) or a galvanic cell (spontaneous chemistry driving electricity), will determine the charge of the anode and the cathode. Depending on where the electrons encounter resistance and find it difficult to pass, a negative charge may emerge. Therefore, you cannot determine the direction of the current just on the charge on the electrode.
Oxidation and reduction always take place at the anode and cathode, respectively.
An element undergoes oxidation when it surrenders one or more electrons to become more positively charged. These electrons leave the chemicals in any type of cell and travel to the anode, where they enter the external circuit.
An element picks up an electron during reduction to become more negatively charged (less positive, lower oxidation state). These electrons are captured from the external circuit at the cathode in both types of cells.
Therefore, no matter what kind of cell you are dealing with, the oxidizing chemicals at the anode transfer the electrons to the external circuit; these electrons then move through the circuit from the anode to the cathode, where they are captured by the reducing chemicals. The electrons always go from the anode to the cathode via the external circuit.
To know more about galvanic cell, please refer:
brainly.com/question/29765093
#SPJ4
1) 2700 kg/l
2) 13.6 kg/l
3) 0.1578 kg
4) 8921.5 kg/m3
5) 1.59 kg/l
6) 1.84 kg/l
7) 0.21965 kg
8) 11331.9 kg/m3
9) 7.9167 kg/l
10) 238.095 cm3
Just divide the masses by volume to find out the density, multiply the volume with density to find out the mass and divide the mass by density to find out the volume.
To turn the result into SI unit (kg/l), divide the g by 1000 and ml by 1000.
Answer is: a) in the presence of a base.
Phenolphthalein is colorless in acidic solutions and pink in basic solutions.
Acid-base indicators are usually weak acids or bases and they are chemical detectors for hydrogen or hydronium cations.
Example for acid-base indicator is phenolphthalein (molecular formula C₂₀H₁₄O₄).
When solution turns phenolphthalein pink, it means it is basic (pH>7).