I am not 100% sure but I am pretty sure the answer is (3,-1,4)
Answer:
The option is C i.e 115°, 65°. proof is given below.
Step-by-step explanation:
Given:
ABCD is a quadrilateral.
m∠ A = 100 + 5x
m∠ B = 77 - 4y
m∠ C = 106 + 3x
m∠ D = 47 + 6y
To Prove:
ABCD is a parallelogram if opposing angles are congruent by finding the measures of angles.
m∠ A = m∠ C and
m∠ B = m∠ D
Proof:
ABCD is a quadrilateral and is a parallelogram if opposing angles are congruent.
∴ m∠ A = m∠ C
On substituting the given values we get
∴ 100 + 5x = 106 +3x
∴ 
m∠ A = 100 + 5x = 100 + 5 × 3 =100 + 15 = 115°
m∠ C = 106 + 3x = 106 + 3 ×3 =106 + 9 = 115°
∴ m∠ A = m∠ C = 115°
Similarly,
∴ m∠ B = m∠ D
77 - 4y = 47 + 6y
10y = 77 - 47
10y =30
∴
m∠ B = 77 - 4y =77 - 4 × 3 = 77 - 12 = 65°
m∠ D = 47 + 6y = 47 + 6 × 3 = 47 + 18 = 65°
∴ m∠ B = m∠ D = 65°
Therefore the option is C i.e 115°, 65°
Answer: 2343 / 256
Explanation
I will do this for you in two forms: 1) adding each term, and 2) using the general formula for the sum of geometric series.
1) Adding the terms:
4
∑ 3 (3/4)^i = 3 (3/4)^0 + 3 (3/4)^1 + 3 (3/4)^2 + 3 (3/4)^3 + 3 (3/4)^4
i=0
= 3 + 9/4 + 27/16 + 81/64 + 243/256 = [256*3 + 27*16 + 64*9 + 4*81 + 243] / 256 =
= 2343 / 256
2) Using the formula:
n-1
∑ A (r^i) = A [1 - r^(n) ] / [ 1 - r]
i=0
Here n - 1 = 4 => n = 5
r = 3/4
A = 3
Therefore the sum is 3 [ 1 - (3/4)^5 ] / [ 1 - (3/4) ] =
= 3 [ 1 - (3^5) / (4^5) ] / [ 1/4 ] = 3 { [ (4^5) - (3^5) ] / (4^5) } / {1/4} =
= (3 * 781) / (4^5) / (1/4) = 3 * 781 / (4^4) = 2343 / 256
So, no doubt, the answer is 2343 / 256
Answer:
C
Step-by-step explanation:
When to use regression test?
- This is done to find the relationship between 2 variables. One dependent and one independent.
When to use Multiple regression test?
- Extension of regression test. It is used to predict value of 1 variable when it depends on 2-3 other variables. Multivariable, basically.
When to use 1-sided t-test?
- We check for possibility of relationship of something from one side. 1 side effect. With a hypothesis and its alternate.
When to use 2-sided t-test?
- This is same as 1-tailed but it looks for possibility from 2sides. A hypothesis and alternate, whether less or more.
Now, Options A and B are not right since we aren't comparing 2 variables here. People believe second born subjects are more intelligent. We have to perform a test to see whether this is true or not. One sided answer. So, we will use One-sided t-test.