The fastest winds and heaviest rain is found in the eye of the hurricane.
Answer: Their u go i found it their was about 3 pages i did not no what pages u had to do.
Explanation:
Answer:
21.21 m/s
Explanation:
Let KE₁ represent the initial kinetic energy.
Let v₁ represent the initial velocity.
Let KE₂ represent the final kinetic energy.
Let v₂ represent the final velocity.
Next, the data obtained from the question:
Initial velocity (v₁) = 15 m/s
Initial kinetic Energy (KE₁) = E
Final final energy (KE₂) = double the initial kinetic energy = 2E
Final velocity (v₂) =?
Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:
KE = ½mv²
NOTE: Mass (m) = constant (since we are considering the same car)
KE₁/v₁² = KE₂/v₂²
E /15² = 2E/v₂²
E/225 = 2E/v₂²
Cross multiply
E × v₂² = 225 × 2E
E × v₂² = 450E
Divide both side by E
v₂² = 450E /E
v₂² = 450
Take the square root of both side.
v₂ = √450
v₂ = 21.21 m/s
Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.
Answer:
Given the exoticism of the orange fruit, you could be forgiven that the color came first as it naturally occurs independent of the fruit such as in sunsets or leaves in autumn. Orange actually comes from the Old French word for the citrus fruit - 'pomme d'orenge' - according to the Collins dictionary.
Explanation:
Answer:
Longitudinal Mechanical Wave
Explanation:
Mechanical waves are the waves that require medium to propagate. And a longitudinal wave is a wave in which the vibration of the energy(here: mass specifically) is in the direction of propagation of wave.
Shock wave, strong pressure wave in any elastic medium such as air, water, or a solid substance, produced by supersonic aircraft, explosions, lightning, or other phenomena that create violent changes in pressure.
Shock waves travel faster than sound and their speed increases as the amplitude of the wave is increased but their intensity fades faster due to the fact that some of its energy gets expended in the form of heat due to the resistance of the medium.