1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lemur [1.5K]
3 years ago
7

Estimate the acceleration you subject yourself to if you walk into a brick wall at normal walking speed. (Make a reasonable esti

mate of your speed and of the time it takes you to come to a stop.) Give your reasoning, and make sure your estimate has units
Physics
1 answer:
xenn [34]3 years ago
4 0

Answer:

From certain assumptions that the walking speed is 2 m/s, and the stop time is 0.1 s the acceleration would be -20 m/s

Explanation:

Using the average acceleration formula:

a=\frac{\Delta v}{\Delta t} where \Delta v and \Delta t are the changes in the speed and time respectively.

We have by assuming that the walking speed is 2 m/s and the stop time is 0.1s which is equal to the change in time during the stopping.

\Delta v=v_f-v_i=0-2 m/s=-2 m/s, where v_i,v_f are the initial speed and final speed respectively, and \Delta t=0.1 s

Plugging the previous in the average acceleration formula we get

a=\frac{-2}{0.1}=-20\, m/s where the minus sign indicates an acceleration in the opposite direction of the motion (or in other word opposite to the speed's direction).

You might be interested in
Which colors allowed the most electricity to be generated
Naddik [55]
Yellow and red hope that helped
3 0
3 years ago
a central concept in quantum mechanics is that both matter and are alternate forms of the same entity and therefore both exhibit
Stels [109]

In quantum mechanics, a central concept is that both matter and <u>energy</u> are alternate forms of the same entity and therefore both exhibit dual characteristics of particles and of <u>waves</u>.

Matter can be defined as anything that has mass and is able to occupy space.

Thus, any physical object or substance that is found on Earth is typically composed of matter.

Similarly, energy is highly affected by the mass of a any physical object or substance just like matter,

Hence, both energy and matter are known to be made up of atoms and as a result of this fact, exhibit dual characteristics of particles and of waves.

A wave can be defined as a disturbance in a medium that progressively transports energy from a source location to another location without the transportation of matter.

In conclusion, this central concept makes it easier for us to better understand the behavior of tiny particles such as electrons.

Find more information: brainly.com/question/17203857

4 0
2 years ago
Read 2 more answers
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500◦C, and 80 m/s, and the exit
Cerrena [4.2K]

Answer:

a) ΔEC=-23.4kW

b)W=12106.2kW

c)A=0.01297m^2

Explanation:

A)

The kinetic energy is defined as:

\frac{m*vel^2}{2} (vel is the velocity, to differentiate with v, specific volume).

The kinetic energy change will be: Δ (\frac{mvel^2}{2})=\frac{m*vel_2^2}{2}-\frac{m*vel_1^2}{2}

Δ (\frac{mvel^2}{2})=\frac{m}{2}*(vel_2^2-vel_1^2)

Where 1 and 2 subscripts mean initial and final state respectively.

Δ(\frac{mvel^2}{2})=\frac{12\frac{kg}{s}}{2}*(50^2-80^2)\frac{m^2}{s^2}=-23400W=-23.4kW

This amount is negative because the steam is losing that energy.

B)

Consider the energy balance, with a neglective height difference: The energy that enters to the turbine (which is in the steam) is the same that goes out (which is in the steam and in the work done).

H_1+\frac{m*vel_1^2}{2}=H_2+\frac{m*vel_2^2}{2}+W\\W=m*(h_1-h_2)+\frac{m}{2} *(vel_1^2-vel_2^2)

We already know the last quantity: \frac{m}{2} *(vel_1^2-vel_2^2)=-Δ (\frac{mvel^2}{2})=23400W

For the steam enthalpies, review the steam tables (I attach the ones that I used); according to that, h_1=h(T=500C,P=4MPa)=3445.3\frac{kJ}{kg}

The exit state is a liquid-vapor mixture, so its enthalpy is:

h_2=h_f+xh_{fg}=289.23+0.92*2366.1=2483.4\frac{kJ}{kg}

Finally, the work can be obtained:

W=12\frac{kg}{s}*(3445.3-2438.4)\frac{kJ}{kg} +23.400kW)=12106.2kW

C) For the area, consider the equation of mass flow:

m=p*vel*A where p is the density, and A the area. The density is the inverse of the specific volume, so m=\frac{vel*A}{v}

The specific volume of the inlet steam can be read also from the steam tables, and its value is: 0.08643\frac{m^3}{kg}, so:

A=\frac{m*v}{vel}=\frac{12\frac{kg}{s}*0.08643\frac{m^3}{kg}}{80\frac{m}{s}}=0.01297m^2

Download pdf
7 0
3 years ago
A worker does 25 J of work lifting a bucket, then sets the bucket back down in the same place. What is the total net work done o
Vera_Pavlovna [14]

Answer:

0 J

Explanation:

As work is force times displacement, if no displacement occurs, no work occurs.

5 0
2 years ago
At an altitude of 5000 m the rocket's acceleration has increased to 6.9 m/s2 . What mass of fuel has it burned?
sergey [27]

1) Initial upward acceleration: 6.0 m/s^2

2) Mass of burned fuel: 0.10\cdot 10^4 kg

Explanation:

1)

There are two forces acting on the rocket at the beginning:

- The force of gravity, of magnitude F_g = mg, in the downward direction, where

m=1.9\cdot 10^4 kg is the rocket's mass

g=9.8 m/s^2 is the acceleration of gravity

- The thrust of the motor, T, in the upward direction, of magnitude

T=3.0\cdot 10^5 N

According to Newton's second law of motion, the net force on the rocket must be equal to the product between its mass and its acceleration, so we can write:

T-mg=ma (1)

where a is the acceleration of the rocket.

Solving for a, we find the initial acceleration:

a=\frac{T-mg}{m}=\frac{3.0\cdot 10^5-(1.9\cdot 10^4)(9.8)}{1.9\cdot 10^4}=6.0 m/s^2

2)

When the rocket reaches an altitude of 5000 m, its acceleration has increased to

a'=6.9 m/s^2

The reason for this increase is that the mass of the rocket has decreased, because the rocket has burned some fuel.

We can therefore rewrite eq.(1) as

T-m'g=m'a'

where

m' is the new mass of the rocket

Re-arranging the equation and solving for m', we find

m'=\frac{T}{g+a}=\frac{3.0\cdot 10^5}{9.8+6.9}=1.8\cdot 10^4 kg

And since the initial mass of the rocket was

m=1.9 \cdot 10^4 kg

This means that the mass of fuel burned is

\Delta m = m-m'=1.9\cdot 10^4 - 1.80\cdot 10^4 = 0.10\cdot 10^4 kg

3 0
3 years ago
Other questions:
  • A voltage of 21.0V across the terminals of a device produces a current of 3.00 mA through the device. What is the resistance of
    11·1 answer
  • Which of the following would affect the climate of an area?
    10·2 answers
  • A bicycle wheel rotates at a constant 25 rev/min. What is true about its angular acceleration?
    6·1 answer
  • Here are the positions at three different times for a bee in flight (a bee's top speed is about 7 m/s). Time 6.6 s 6.9 s 7.2 s P
    9·1 answer
  • A spring with an 8-kg mass is kept stretched 0.4 m beyond its natural length by a force of 32 N. The spring starts at its equili
    12·2 answers
  • Is mechanical advantage always greater than one?
    15·1 answer
  • A switch can
    15·1 answer
  • On earth which force is 10 to slow an object down
    11·1 answer
  • Select the correct answer.
    11·1 answer
  • Explain the reason for following in science. A small stone trapped in your shoe, under your foot, can be very painful.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!