Answer:
The minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Explanation:
We know by equation of motion that,

Where, v= final velocity m/sec
u=initial velocity m/sec
a=Acceleration m/
s= Distance traveled before stop m
Case 1
u= 13 m/sec, v=0, s= 57.46 m, a=?

a = -1.47 m/
(a is negative since final velocity is less then initial velocity)
Case 2
u=29 m/sec, v=0, s= ?, a=-1.47 m/
(since same friction force is applied)

s = 285.94 m
Hence the minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
<span>The velocity would be 54.2 m/s
We would use the equation 1/2mv^2top+mghtop = 1/2mv^2bottom+mghbottom where m is the mass of the bobsled(which can be ignored), vtop/bottom is the velocity of the bobsled at the top or bottom, g is gravity, and htop/bottom is the height of the bobsled at the top or bottom of the hill. Since the velocity of the bobsled at the top of the hill and height at the bottom of the hill are zero, 1/2mv^2top and mghbottom will equal zero. The equation will be mghtop=1/2mv^2bottom. Thus we would solve for v.</span>
The correct answer is the Mesosphere. <span>Mesosphere </span><span>is the layer of the Earth's atmosphere that is directly above the stratopause and directly below the mesopause.</span>
Answer:
Explanation:
To stop a ball with high momentum in a small-time imparts a high amount of impact on hands. This is the reason for the stinging of hands.
The momentum of the ball is due to the mass and velocity. To prevent stinging in the hand one needs to lower his hands to increase the time of contact. In this way, the momentum transfer to the hands will be lesser.
Answer:
1) p₀ = 0.219 kg m / s, p = 0, 2) Δp = -0.219 kg m / s, 3) 100%
Explanation:
For the first part, which is speed just before the crash, we can use energy conservation
Initial. Highest point
Em₀ = U = mg y
Final. Low point just before the crash
Emf = K = ½ m v²
Em₀ = Emf
m g y = ½ m v²
v = √ 2 g y
Let's calculate
v = √ (2 9.8 0.05)
v = 0.99 m / s
1) the moment before the crash is
p₀ = m v
p₀ = 0.221 0.99
p₀ = 0.219 kg m / s
After the collision, the car's speed is zero, so its moment is zero.
p = 0
2) change of momentum
Δp = p - p₀
Δp = 0- 0.219
Δp = -0.219 kg m / s
3) the reason is
Δp / p = 1
In percentage form it is 100%