Answer: Speeding up the orbital speed of earth so it escapes the sun require the greater energy.
Explanation: To find the answer, we need to know more about the Orbital and escape velocities.
<h3>
What is Orbital and Escape velocity?</h3>
- Orbital velocity can be defined as the minimum velocity required to put the satellite in its orbit around the earth.
- The expression for orbital velocity near to the surface of earth will be,

- Escape velocity can be defined as the minimum velocity with which a body must be projected from the surface of earth, so that it escapes from the gravitational field of earth.
- The expression for orbital velocity will be,

- If we want to get into the sun, we want to slow down almost completely, so that your speed relative to the sun became almost zero.
- We need about twice the raw speed to go to the sun than to leave the sun.
Thus, we can conclude that, the speeding up the orbital speed of earth so it escapes the sun require the greater energy.
Learn more about orbital and escape velocity here:
brainly.com/question/28045208
#SPJ4
Answer:
16 degrees
Explanation:
The tipping point of the cabinet is sketched below.
On the list of choices that you provided, there is no such statement.
Answer:
option (c)
Explanation:
90% of the body is submerged in water.
Now it is immersed in an unknown liquid whose density is less than the density of water.
Buoyant force acting on the body depends on the volume immersed, density of liquid and gravity.
As the density of liquid is less than the density of water, so the buoyant force acting on the body by the unknown liquid is less than water. So it is submerged less than 90% in this liquid.