1/36 since there are 6 sides on both dice you times them together or you could list out the options like 1-1 1-2 etc and count it out
6×6=36
I'm confused on what you're asking, but this is scientific notation on the first one of 0.0000855. 8.55 x 10^-5
6.6766*10^4 is that number in scientific notation
Answer:
b||c; c||d; b||d
Step-by-step explanation:
Substituting 10 for x, in the angle beside b we have
7(10)-5 = 70-5 = 65
In the angle beside c we have
10(10)+15 = 100+15 = 115
In the angle beside d we have
12(10)-5 = 120-5 = 115
In the angle beside we have
8(10)-25 = 80-25 = 55
The angle beside c has a vertical angle on the other side of c. This angle would be same-side interior angles with the angle beside b; this is because they are inside the block of lines made by b and c and on the same side of a, the transversal. These two angles are supplementary; this is because 65+115 = 180. Since these angles are supplementary, this means that b||c.
The angle beside c and the angle beside d would be alternate interior angles; this is because they are inside the block of lines made by c and d and on opposite sides of the transversal. These two angles are congruent; this means that c||d.
Since b||c and c||d, by the transitive property, b||d.
Answer:
![\dfrac{7}{9}](https://tex.z-dn.net/?f=%5Cdfrac%7B7%7D%7B9%7D)
Step-by-step explanation:
![\dfrac{x+1}{y+1}=\dfrac{4}{5}\\\Rightarrow 5x-4y=-1](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%2B1%7D%7By%2B1%7D%3D%5Cdfrac%7B4%7D%7B5%7D%5C%5C%5CRightarrow%205x-4y%3D-1)
![\dfrac{x-5}{y-5}=\dfrac{1}{2}\\\Rightarrow 2x-y=5](https://tex.z-dn.net/?f=%5Cdfrac%7Bx-5%7D%7By-5%7D%3D%5Cdfrac%7B1%7D%7B2%7D%5C%5C%5CRightarrow%202x-y%3D5)
Putting it in matrix form
![\begin{bmatrix}a_{1}&b_{1}\\a_{2}&b_{2}\end{bmatrix}{\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}{c_{1}}\\{c_{2}}\end{bmatrix}\\\Rightarrow\begin{bmatrix}5 & -4\\2 & -1\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix}=\begin{bmatrix}-1\\ 5\end{bmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bbmatrix%7Da_%7B1%7D%26b_%7B1%7D%5C%5Ca_%7B2%7D%26b_%7B2%7D%5Cend%7Bbmatrix%7D%7B%5Cbegin%7Bbmatrix%7Dx%5C%5Cy%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D%7Bc_%7B1%7D%7D%5C%5C%7Bc_%7B2%7D%7D%5Cend%7Bbmatrix%7D%5C%5C%5CRightarrow%5Cbegin%7Bbmatrix%7D5%20%26%20-4%5C%5C2%20%26%20-1%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7Dx%5C%5C%20y%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D-1%5C%5C%205%5Cend%7Bbmatrix%7D)
From Cramer's rule we have
![x=\dfrac{\begin{vmatrix}c_1 &b_1 \\ c_2 & b_2\end{vmatrix}}{\begin{vmatrix}a_1 &b_1 \\ a_2& b_2\end{vmatrix}}\\\Rightarrow x=\dfrac{\begin{vmatrix}-1 &-4 \\ 5 & -1\end{vmatrix}}{\begin{vmatrix}5 &-4 \\ 2& -1\end{vmatrix}}\\\Rightarrow x=\dfrac{1+20}{-5+8}\\\Rightarrow x=7](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7B%5Cbegin%7Bvmatrix%7Dc_1%20%26b_1%20%5C%5C%20c_2%20%26%20b_2%5Cend%7Bvmatrix%7D%7D%7B%5Cbegin%7Bvmatrix%7Da_1%20%26b_1%20%5C%5C%20a_2%26%20b_2%5Cend%7Bvmatrix%7D%7D%5C%5C%5CRightarrow%20x%3D%5Cdfrac%7B%5Cbegin%7Bvmatrix%7D-1%20%26-4%20%5C%5C%205%20%26%20-1%5Cend%7Bvmatrix%7D%7D%7B%5Cbegin%7Bvmatrix%7D5%20%26-4%20%5C%5C%202%26%20-1%5Cend%7Bvmatrix%7D%7D%5C%5C%5CRightarrow%20x%3D%5Cdfrac%7B1%2B20%7D%7B-5%2B8%7D%5C%5C%5CRightarrow%20x%3D7)
![y=\dfrac{\begin{vmatrix}a_1 &c_1 \\ a_2 & c_1\end{vmatrix}}{\begin{vmatrix}a_1 &b_1 \\ a_2& b_2\end{vmatrix}}\\\Rightarrow y=\dfrac{\begin{vmatrix}5 &-1 \\ 2 & 5\end{vmatrix}}{\begin{vmatrix}5 &-4 \\ 2& -1 \end{vmatrix}}\\\Rightarrow y=\dfrac{25+2}{-5+8}\\\Rightarrow y=9](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B%5Cbegin%7Bvmatrix%7Da_1%20%26c_1%20%5C%5C%20a_2%20%26%20c_1%5Cend%7Bvmatrix%7D%7D%7B%5Cbegin%7Bvmatrix%7Da_1%20%26b_1%20%5C%5C%20a_2%26%20b_2%5Cend%7Bvmatrix%7D%7D%5C%5C%5CRightarrow%20y%3D%5Cdfrac%7B%5Cbegin%7Bvmatrix%7D5%20%26-1%20%5C%5C%202%20%26%205%5Cend%7Bvmatrix%7D%7D%7B%5Cbegin%7Bvmatrix%7D5%20%26-4%20%5C%5C%202%26%20-1%20%5Cend%7Bvmatrix%7D%7D%5C%5C%5CRightarrow%20y%3D%5Cdfrac%7B25%2B2%7D%7B-5%2B8%7D%5C%5C%5CRightarrow%20y%3D9)
Verifying the results
![\dfrac{7+1}{9+1}=\dfrac{8}{10}=\dfrac{4}{5}](https://tex.z-dn.net/?f=%5Cdfrac%7B7%2B1%7D%7B9%2B1%7D%3D%5Cdfrac%7B8%7D%7B10%7D%3D%5Cdfrac%7B4%7D%7B5%7D)
![\dfrac{7-5}{9-5}=\dfrac{2}{4}=\dfrac{1}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B7-5%7D%7B9-5%7D%3D%5Cdfrac%7B2%7D%7B4%7D%3D%5Cdfrac%7B1%7D%7B2%7D)
Hence, the fraction is
.