<span>Why are leaves different colors?</span><span>
The chlorophyll breaks down</span>
Answer:
bdndbdjdbdjdbdjdbsidbdidbsjsbsisbsidbd
Answer:
0.17 moles
Explanation:
In the elements of the periodic table, the atomic mass = molar mass. <u>Ex:</u> Atomic mass of Carbon is 12.01 amu which means molar mass of Carbon is also 12.01g/mol.
In order to find the # of moles in a 12 g sample of NiC-12, we will need to multiply the number of each atom by its molar mass and then add the masses of both Nickel and C-12 found in the periodic table:
- Molar Mass of Ni (Nickel): 58.69 g/mol
- Molar Mass of C (Carbon): 12.01 g/mol
Since there's just one atom of both Carbon and Nickel, we just add up the masses to find the molar mass of the whole compound of NiC-12.
- 58.69 g/mol of Nickel + 12.01 g/mol of Carbon = 70.7 g/mol of NiC-12
There's 12g of NiC-12, which is less than the molar mass of NiC-12, so the number of moles should be less than 1. In order to find the # of moles in NiC-12, we need to do some dimensional analysis:
- 12g NiC-12 (1 mol of NiC-12/70.7g NiC-12) = 0.17 mol of NiC-12
- The grams cancel, leaving us with moles of NiC-12, so the answer is 0.17 moles of NiC-12 in a 12 g sample.
<em>P.S. C-12 or C12 just means that the Carbon atom has an atomic mass of 12amu and a molar mass of 12g/mol, or just regular carbon.</em>
Answer:
NaCl.
Explanation:
In the solution, ZnSe ionizes to
and
. Following reaction represents the ionization of ZnSe in solution -
⇄ 
As we want to increase the solubility of ZnSe, we must decrease the concentration of dissociated ions so that the reaction continues to forward direction.
If we add NaCl to this solution, then we have
and
in the solution which will be formed by the ionization of NaCl.
Now,
in the solution will react with two
ions to form
as follows -
⇄ 
Due to this reaction the concentration of
will decrease in the solution and more ZnSe can be soluble in the solution.
Answer:
Sorry pal! Didn't understand your language.
:(
Explanation: