A study assessing the effect of anxiety (low vs. high) and stress (low vs. moderate vs. high) on test.
Everyone experiences anxiety occasionally, but persistent anxiety can reduce your quality of life. Though likely best known for altering behavior, worry can have negative effects on our physical health. Anxiety speeds up our heartbeat and breathing, concentrating blood flow to the parts of our brains that need it. You are getting ready for a challenging situation by having this extremely bodily reaction. Test performance may be impacted by anxiety. According to studies, pupils with low levels of test anxiety perform better on multiple-choice question (MCQ) exams than pupils with high levels of anxiety. Studies have indicated that female students have greater levels of test anxiety than male students.
Learn more about anxiety here:
brainly.com/question/4913240
#SPJ4
Answer:
75 mg
Explanation:
We can write the extraction formula as
x = m/[1 + (1/K)(Vaq/Vo)], where
x = mass extracted
m = total mass of solute
K = distribution coefficient
Vo = volume of organic layer
Vaq = volume of aqueous layer
Data:
m = 75 mg
K = 1.8
Vo = 0.90 mL
Vaq = 1.00 mL
Calculations:
For each extraction,
1 + (1/K)(Vaq/Vo) = 1 + (1/1.8)(1.00/0.90) = 1 + 0.62 = 1.62
x = m/1.62 = 0.618m
So, 61.8 % of the solute is extracted in each step.
In other words, 38.2 % of the solute remains.
Let r = the amount remaining after n extractions. Then
r = m(0.382)^n.
If n = 7,
r = 75(0.382)^7 = 75 × 0.001 18 = 0.088 mg
m = 75 - 0.088 = 75 mg
After seven extractions, 75 mg (99.999 %) of the solute will be extracted.
1.50x10^6 m2 is the answer you're looking for
Answer:
The correct option is: Cost of materials used in manufacture
Explanation:
There are two types of costs of an object: the internal costs and the external costs.
The internal cost of an object is the direct monetized cost. It refers to the cost involved in the <u>production or manufacturing of a given objec</u>t. Example: labor, <u>material required</u>, equipment, energy, and overhead expenses.
<span>1) Use the balanced chemical equation to find the molar ratios (proportions) of each product and reactant.
3N2H4(l)→4NH3(g)+N2(g)
=> molar ratios: 3 mol N2H4 : 4 mol NH3
2) Use the product to reactant molar ratio, and the quantity of reactant to determine the yield:
2.0 mol N2H4 * [4mol NH3] / [3mol N2H4] = 2*4/3 mol NH3 = 2.7 mol NH3
Answer: 2.7 mol
</span>