Answer:
786.6 N
Explanation:
mass of car, m = 912 kg
initial velocity of car, u = 31.5 m/s
final velocity of car, v = 24.6 m/ s
time, t = 8 s
Let a be the acceleration of the car
Use first equation of motion
v = u + a t
24.6 = 31.5 + a x 8
a = - 0.8625 m/s^2
Force, F = mass x acceleration
F = 912 x 0.8625
F = 786.6 N
Thus, the force on the car is 786.6 N.
Answer:
The specific gravity of the unkown liquid is 15.
Explanation:
Gauge pressure, at the bottom of the tank in this case, can be calculated from

where
and
are the height of the column of oil and the unkown liquid, respectively. Writing for
, we have

Relative to water, the unknow liquid specific weight is 15 times bigger, therefore this is its specific gravity as well.
Answer:
Layer 1, Rock 2, Rock 1, Fault
Here we can use coulomb's law to find the force between two charges
As per coulombs law
]tex]F = \frac{kq_1q_2}{r^2}[/tex]
here we have




now by using the above equation we have


so here the force between two charges is of above magnitude and this will be repulsive force between them as both charges are of same sign.
Acceleration is the rate of change of the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. To determine acceleration, we need to know the initial velocity and the final velocity and the time elapsed. From the given values, we need t o calculate for the initial velocity. We use some kinematic equations. We do as follows:
x = v0t + at^2/2
60 = v0(6) + a(6)^2/2
60 = 6v0 + 18a (EQUATION 1)
vf = v0 + at
15 = v0 + a(6)
15 = v0 + 6a (EQUATION 2)
Solving for v0 and a,
v0 = 5 m/s
a = 1.7 m/s^2