Comets orbit the sun just like planets do. Except a comet usually has a very elongated orbit. Thanks to the laws of gravity comets obey the same laws. A comets orbit takes it very close to the sun and then far away again.
Answer:
I think c is the answer but I have a little concern on d too
Answer:
a) 
Explanation:
a) Let assume that the ground is not inclined, since the bottom of the playground slide is tangent to ground. Then, the length of given by the definition of a circular arc:



The bottom of the slide has a height of zero. The physical phenomenon around Dr. Ritchey's daughter is modelled after Principle of Energy Conservation. The child begins at rest:


The average frictional force is cleared within the expression:

![f = \frac{(12\,kg)\cdot [(9.807\,\frac{m}{s^{2}} )\cdot (3\,m)-\frac{1}{2}\cdot (4.5\,\frac{m}{s} )^{2} ]}{6.676\,m}](https://tex.z-dn.net/?f=f%20%3D%20%5Cfrac%7B%2812%5C%2Ckg%29%5Ccdot%20%5B%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%29%5Ccdot%20%283%5C%2Cm%29-%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%284.5%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%20%5D%7D%7B6.676%5C%2Cm%7D)

Answer:
Kinetic energy
Explanation:
When an apple falls from a tree it has to do with the energy from gravity. Gravity energy turns into kinetic energy once its in motion.
Sorry if im wrong
In question 1, both of your answers are correct, but I don't understand the process you went through in the 'a' part.
R = v/I . That's a correct formula.
But it doesn't help you in this form, because you need to find I
So turn it into a helpful form ... Solve it for I, so it says I=something.
R= v/I
Multiply each side by I : R I = V.
Now divide each side by R: I= V/R .
THERE'S the equation you want.
I = V / R
I = 1.5 / 10 = 0.15 Amp.
That's slightly cleaner, although I don't really understand what you were actually thinking in that part.
But again ... You answered both parts correctly, and your process in b is fine.