C Occupational Safety and Health Administration
Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
Answer:
2.464 cm above the water surface
Explanation:
Recall that for the cube to float, means that the volume of water displaced weights the same as the weight of the block.
We calculate the weight of the block multiplying its density (0.78 gr/cm^3) times its volume (11.2^3 cm^3):
weight of the block = 0.78 * 11.2^3 gr
Now the displaced water will have a volume equal to the base of the cube (11.2 cm^2) times the part of the cube (x) that is under water. Recall as well that the density of water is 1 gr/cm^3.
So the weight of the volume of water displaced is:
weight of water = 1 * 11.2^2 * x
we make both weight expressions equal each other for the floating requirement:
0.78 * 11.2^3 = 11.2^2 * x
then x = 0.78 * 11.2 cm = 8.736 cm
This "x" is the portion of the cube under water. Then to estimate what is left of the cube above water, we subtract it from the cube's height (11.2 cm) as follows:
11.2 cm - 8.736 cm = 2.464 cm
Answer:
0.8712 m/s²
Explanation:
We are given;
Velocity of first car; v1 = 33 m/s
Distance; d = 2.5 km = 2500 m
Acceleration of first car; a1 = 0 m/s² (constant acceleration)
Velocity of second car; v2 = 0 m/s (since the second car starts from rest)
From Newton's equation of motion, we know that;
d = ut + ½at²
Thus,for first car, we have;
d = v1•t + ½(a1)t²
Plugging in the relevant values, we have;
d = 33t + 0
d = 33t
For second car, we have;
d = v2•t + ½(a2)•t²
Plugging in the relevant values, we have;
d = 0 + ½(a2)t²
d = ½(a2)t²
Since they meet at the next exit, then;
33t = ½(a2)t²
simplifying to get;
33 = ½(a2)t
Now, we also know that;
t = distance/speed = d/v1 = 2500/33
Thus;
33 = ½ × (a2) × (2500/33)
Rearranging, we have;
a2 = (33 × 33 × 2)/2500
a2 = 0.8712 m/s²
Answer is x hopefully this helps your stupid head